Herein, we describe our studies on the synthesis of 1α,25-dihydroxyvitamin D 3 analogs possessing a benzene ring replacing the natural 5-membered D-ring by the Wittig-Horner and dienyne approaches. A key feature is the synthesis of a Cr(CO) 3 -complexed previtamin D derivative that enables the construction of vitamin D analogs with aromatic D-ring through a thermal [1,7]-H sigmatropic shift. This study establishes the basis for the design of new vitamin D analogs containing aromatic D-ring, complexed or uncomplexed to Cr(CO) 3 type moieties for specific molecular recognition and drug research and development.
An improved synthetic route to 1α,25-dihydroxyvitamin D(3) des-side chain analogues 2 a and 2 b with substituents at C18 is reported, along with their biological activity. These analogues display significant antiproliferative effects toward MCF-7 breast cancer cells and prodifferentiation activity toward SW480-ADH colon cancer cells; they are also characterized by a greatly decreased calcemic profile. The crystal structure of the human vitamin D receptor (hVDR) complexed to one of these analogues, 20(17→18)-abeo-1α,25-dihydroxy-22-homo-21-norvitamin D(3) (2 a) reveals that the side chain introduced at position C18 adopts the same orientation in the ligand binding pocket as the side chain of 1α,25-dihydroxyvitamin D(3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.