Alpers–Huttenlocher syndrome (AHS) an autosomal recessive hepatocerebral syndrome of early onset, has been associated with mitochondrial DNA (mtDNA) depletion and mutations in polymerase gamma gene (POLG). We have identified POLG mutations in four patients with hepatocerebral syndrome and mtDNA depletion in liver, who fulfilled criteria for AHS. All were compound heterozygous for the G848S and W748S mutations, previously reported in patients with progressive external ophtalmoplegia or ataxia. We conclude that AHS should be included in the clinical spectrum of mtDNA depletion and is often associated with POLG mutations, which can cause either multiple mtDNA deletions or mtDNA depletion. Ann Neurol 2005;57:921–924
In 1975, dihydropteridine reductase (DHPR) deficiency was first recognized as a cause of tetrahydrobiopterin (BH(4)) deficiency, leading to hyperphenylalaninemia (HPA) and impaired biogenic amine deficiency. So far, more than 150 patients scattered worldwide have been reported and major progresses have been made in the understanding of physiopathology, screening, diagnosis, treatment, and molecular genetics of this inherited disease. Present knowledge on different aspects of DHPR deficiency, largely derived from authors' personal experience, is traced in this article.
Human GATA3 haploinsufficiency leads to HDR (hypoparathyroidism, deafness, and renal dysplasia) syndrome. The development of a specific subset of organs in which this transcription factor is expressed appears exquisitely sensitive to gene dosage. We report on a 14-year-old patient with symptomatic hypoparathyroidism, sensorineural bilateral deafness, unilateral renal dysplasia, bilateral palpebral ptosis, and horizontal nystagmus. Fundoscopy displayed symmetrical pseudopapilledema, and brain CT scan revealed basal ganglia calcifications. FISH analysis did not disclose any microdeletion in the 22q11.2 or 10p14 regions. GATA3 mutation analysis identified a heterozygous deletion of GG nucleotides at codon 36 and 37 (c.108_109delGG) in exon 2 causing a frameshift with a premature stop codon after a new 15-aminoacid sequence. Restriction endonuclease analysis performed in parents was negative. Our patient carries a novel "de novo" GATA3 mutation, providing further evidence that HDR syndrome is caused by haploinsufficiency of GATA3, which may be responsible for a complex neurologic picture besides the known triad.
To describe the clinical features, muscle pathological characteristics, and molecular studies of a patient with a mutation in the gene encoding the accessory subunit (p55) of polymerase ␥ (POLG2) and a mutation in the OPA1 gene.Design: Clinical examination and morphological, biochemical, and molecular analyses.Setting: Tertiary care university hospitals and molecular genetics and scientific computing laboratory.Patient: A 42-year-old man experienced hearing loss, progressive external ophthalmoplegia (PEO), loss of central vision, macrocytic anemia, and hypogonadism. His family history was negative for neurological disease, and his serum lactate level was normal.Results: A muscle biopsy specimen showed scattered intensely succinate dehydrogenase-positive and cytochrome-c oxidase-negative fibers. Southern blot of muscle mitochondrial DNA showed multiple deletions. The results of screening for mutations in the nuclear genes associated with PEO and multiple mitochondrial DNA deletions, including those in POLG (polymerase ␥ gene), ANT1 (gene encoding adenine nucleotide translocator 1), and PEO1, were negative, but sequencing of POLG2 revealed a G1247C mutation in exon 7, resulting in the substitution of a highly conserved glycine with an alanine at codon 416 (G416A). Because biochemical analysis of the mutant protein showed no alteration in chromatographic properties and normal ability to protect the catalytic subunit from N-ethylmaleimide, we also sequenced the OPA1 gene and identified a novel heterozygous mutation (Y582C).
Conclusion:Although we initially focused on the mutation in POLG2, the mutation in OPA1 is more likely to explain the late-onset PEO and multisystem disorder in this patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.