We report on the magnetic properties of MoS2 measured from room temperature down to 10 K and magnetic fields up to 5 T. We find that single crystals of MoS2 display ferromagnetism superimposed onto large temperature-dependent diamagnetism and have observed that ferromagnetism persists from 10 K up to room temperature. We attribute the existence of ferromagnetism partly to the presence of zigzag edges in the magnetic ground state at the grain boundaries. Since the magnetic measurements are relatively insensitive to the interlayer coupling, these results are expected to be valid in the single layer limit.
We obtained metallic SrTiO3 with an atomically smooth surface, where the step height is close to the unit cell height of the crystal. After the surface treatments for generating the TiO2 terminated layer, the optimal conditions for vacuum annealing were found. The atomically smooth surface was verified by atomic force microscopy and lateral force microscopy. The temperature dependent resistance R(T) measured down to 52 mK indicates the metallic behavior, and its physical origin of the conduction was analyzed by fitting an equation involving electron-phonon and electron-electron scattering mechanisms. Our results are similar to R(T) reported for LaAlO3/SrTiO3 interfaces. In addition, the Hall effect measurement shows a clear resemblance between our reduced SrTiO3 and LaAlO3/SrTiO3 interfaces with sheet carrier density and Hall mobility. We expect that our treatments not only promote the usage of conducting SrTiO3 substrates for subsequent thin film growth but also contribute to the current research interest in two dimensional electron gas (2DEG) SrTiO3 and the interfaces between insulating oxides of LaAlO3/SrTiO3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.