Background Dealing with the ever-increasing water pollution has become an urgent global problem, especially the organic containing polluted water. Physical adsorption has become one of the most popular ways for removal of organic dyes from wastewater due to its low cost as well as high efficiency. However, the adsorption performance is still limited by the low specific surface area (SSA) and unsuitable pore size. Hence, it is still a challenge to synthesize active carbon (AC) with high SSA, suitable pore size distribution as well as low cost for polluted water treatment. Here, we report an efficient method to prepare AC with large SSA from jujube for removal of both cationic dye and anionic dye from aqueous solution. The present results demonstrate that biomass-derived hierarchical porous carbon has a real potential application for wastewater treatment. Results The as-prepared hierarchical porous structure carbon material (PC-500-6) shows a high specific surface area (3203 m2/g) and pore size distribution in the range 0.8 to 3.0 nm, while exhibiting an enhanced adsorption performance for both methylene blue (MB) and methylene orange (MO) from an aqueous solution. The maximum adsorption capacity even reaches 925.93 mg/g and 1281.39 mg/g for MB and MO, which was calculated from Langmuir model. Through analysis of the adsorption data, it was found that the corresponding adsorption kinetic fits the pseudo-second-order model very well. Conclusions It can be concluded that the adsorption of MB has a strong correlation with SSA, pore size distribution as well as the pore volume. The present study paved a practical way for wastewater treatment by using biomass-derived hierarchical porous carbon.
Zimbabwe at the turn of the new millennium has received widespread condemnation particularly with the implementation of the controversial land reform programme. Such criticisms and attacks on the government threatened the existence of the regime; as such the regime employed various strategies to ensure its survival in an anarchical environment. The image portrayed abroad has been tattered as some of the survival strategies the regime used were followed by reports of violence, instability and abandonment of the rule of law, which created a serious challenge to modern developments on democracy and human rights. As a result Zimbabwe lost many friends especially from the West and /or West controlled institutions through either suspension from IMF and Commonwealth. From such a stand point this paper therefore seeks to analyse the Regime survival strategies in Zimbabwe in the 21st century.
Positron-electron annihilation in living organisms occurs in about 30% via the formation of a metastable ortho-positronium atom that annihilates into two 511 keV photons in tissues because of the pick-off and conversion processes. Positronium (Ps) annihilation lifetime and intensities can be used to determine the size and quantity of defects in a material’s microstructure, such as voids or pores in the range of nanometers. This is particularly true for blood clots. Here we present pilot investigations of positronium properties in fibrin clots. The studies are complemented by the use of SEM Edax and micro-computed tomography (µCT) to evaluate the extracted thrombotic material’s properties. µCT is a versatile characterization method offering in situ and in operando possibilities and is a qualitative diagnostic tool. With µCT the presence of pores, cracks, and structural errors can be verified, and hence the 3D inner structure of samples can be investigated.
In this work, a series of three-dimensional (3D) porous carbon nanomaterial with large specific surface area and hierarchical pores were selectively prepared from biomass with varied properties obtained by tuning the carbonization temperature and activation agent. The optimized carbon sample (PC-500-6) exhibits a typical hierarchical porous structure with a high specific surface area (3203 m2/g) and pore size distribution in the range 0.8 to 3.0 nm, which shows excellent adsorption performance for methylene blue (MB) from an aqueous solution. The maximum adsorption capacity even reaches 917.43 mg/g, which is among one of the best results up to now. Through analysis of the adsorption data, it is found that the corresponding adsorption kinetic fits the pseudo-second-order model very well. The present results demonstrate that biomass-derived hierarchical porous carbon has a real potential application for wastewater treatment.Background:Dealing with the ever-increasing water pollution has become an urgent global problem, especially the organic containing polluted water. The physical adsorption has become one of the most popular ways for removal of organic dyes from wastewater due to its low cost as well as high efficiency. However, the adsorption performance is still limited by the low specific surface area (SSA) and unsuitable pore size. Hence, it is still a challenge to synthesize active carbon (AC) with high SSA, suitable pore size distribution as well as low cost for polluted water treatment. Here, we report an efficient method to prepare AC with large SSA from jujube for removal of MB in aqueous solution. The present results demonstrate that biomass-derived hierarchical porous carbon has a real potential application for wastewater treatment.Results:The as-prepared hierarchical porous structure carbon material (PC-500-6) shows a high specific surface area (3203 m2/g) and pore size distribution in the range 0.8 to 3.0 nm, while exhibits an enhanced adsorption performance for methylene blue (MB) from an aqueous solution. The maximum adsorption capacity even reaches 917.43 mg/g, which was calculated from Langmuir model. Through analysis of the adsorption data, it is found that the corresponding adsorption kinetic fits the pseudo-second-order model very well.Conclusions:It can be concluded that the adsorption of MB has a strong correlation with SSA, pore size distribution as well as the pore volume. The present study paved a practical way for wastewater treatment by using biomass-derived hierarchical porous carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.