Figure 1: Co-speech gesture generation approaches can be divided into rule-based and data-driven. Rule-based systems use carefully designed heuristics to associate speech with gesture (Section 4). Data-driven approaches associate speech and gesture through statistical modeling (Section 5.2), or by learning multimodal representations using deep generative models (Section 5.3). The main input modalities are speech audio in an intermediate representation; text transcript of speech; humanoid pose in joint position or angle form; and control parameters for motion design intent. Virtual agents and social robotics are the main research applications, although also compatible with games and film VFX.
Gestures that accompany speech are an essential part of natural and efficient embodied human communication. The automatic generation of such co‐speech gestures is a long‐standing problem in computer animation and is considered an enabling technology for creating believable characters in film, games, and virtual social spaces, as well as for interaction with social robots. The problem is made challenging by the idiosyncratic and non‐periodic nature of human co‐speech gesture motion, and by the great diversity of communicative functions that gestures encompass. The field of gesture generation has seen surging interest in the last few years, owing to the emergence of more and larger datasets of human gesture motion, combined with strides in deep‐learning‐based generative models that benefit from the growing availability of data. This review article summarizes co‐speech gesture generation research, with a particular focus on deep generative models. First, we articulate the theory describing human gesticulation and how it complements speech. Next, we briefly discuss rule‐based and classical statistical gesture synthesis, before delving into deep learning approaches. We employ the choice of input modalities as an organizing principle, examining systems that generate gestures from audio, text and non‐linguistic input. Concurrent with the exposition of deep learning approaches, we chronicle the evolution of the related training data sets in terms of size, diversity, motion quality, and collection method (e.g., optical motion capture or pose estimation from video). Finally, we identify key research challenges in gesture generation, including data availability and quality; producing human‐like motion; grounding the gesture in the co‐occurring speech in interaction with other speakers, and in the environment; performing gesture evaluation; and integration of gesture synthesis into applications. We highlight recent approaches to tackling the various key challenges, as well as the limitations of these approaches, and point toward areas of future development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.