In the scope of this research, the petrographic and geochemical analyses of clastic sedimentary rocks from the St. Barbara, copper and iron ore mine in Rude near Samobor, have been made, aiming to classify and determine the provenance and environment of formation of clastic sedimentary rocks, as well as the influence of hydrothermal fluids on their properties. Eight samples were collected in total from different locations in the mine. Six of those samples have been studied in detail. The results showed structural and geochemical variability and uneven hydrothermal alteration intensity in the samples. Based on petrographic analyses, three rocks are classified as sublithoarenite, quartz arenite and quartz greywacke. Three of the samples are classified as ore breccia, ore sandstone, and ore silt-sandstone due to the pronounced hydrothermal alterations and ore mineralisation. Comprehensively, petrographic and geochemical analyses indicate that the source rocks of the investigated clastic sedimentary rocks were felsic (La/Sc = 0.9-6.2; Th/Sc = 1.3-2.4), most probably sedimentary, possibly resedimented rocks. The extent of source rock weathering was very high (Chemical Index of Alteration CIA = 52.1 - 81.3 %) and the geotectonic position of the sedimentary basin was very likely to be at the passive continental margin.
<p>Numerous outcrops of ultramafic rocks consisting mostly of peridotites occur in the area of Banovina, in Croatia. These rocks were formed as parts of the former Earth's mantle and belong to the Central Dinaride Ophiolite Belt (CDOB), which is direct proof of the existence and closure of the Neothetys ocean in the northern part of the Balkan area. Previous studies have considered these peridotites as fertile, subcontinental parts of the mantle with complex chemistry. This research presents a more detailed petrographic and chemical analysis, focused solely on peridotites as dominant ophiolitic member, with the intention to sort between different types of Banovina peridotites and offer the model for their petrogenesis.&#160;&#160;&#160;</p> <p>Detailed field work, mapping and petrographic analyses have revealed that Banovina peridotites occur as two texturally, lithologicaly and mineralogicaly different types, that crop out in two geographically different belts, the northern (N-belt) and the southern (S-belt). The N-belt contains mostly serpentinite breccias and serpentinized, depleted and mostly porphyroclastic spinel lherzolites that occur in the form of m&#233;lange, while S-belt comprises larger masses of peridotites which consist predominantly of fertile spinel lherzolites with equigranular to porphyroclastic textures. Bulk rock analyses have shown that spinel lherzolites from the S-belt have lower Cr# and Mg# and higher content of Al<sub>2</sub>O<sub>3</sub>, CaO, Na<sub>2</sub>O, TiO<sub>2</sub> and REE than spinel lherzolites from N-belt, and same relations, excluding the REE, can be seen in the chemistry of clinopyroxenes and orthopyroxenes. Spinels from the N-belt spinel lherzolites have a significantly higher Cr# (12,7 &#8211; 50,7) then those from the S-belt spinel lherzolites (7,7 &#8211; 10,8). Two types of dunites, which were found only within S-belt peridotites, have very different petrographic and chemical characteristics. Pyroxene rich dunite is characterized by a coarse-grained protogranular to porphyroclastic texture, high modal pyroxenes (up to 10 vol. %) and spinels enriched in MgO, Al<sub>2</sub>O<sub>3</sub> and NiO. The second type of dunite has small-grained equigranular texture, contains amphibole (up to 1 vol. %), pyroxene (< 1 vol. %) and spinels enriched in Cr<sub>2</sub>O<sub>3</sub> and FeO<sub>T</sub>. Geochemical analysis of all peridotites indicate that the S-belt peridotites represent a subcontinental mantle which have been formed through the initial rifting phase during which they ascended to the upper crust. Peridotites from the S-belt are classified as orogenic peridotites. The geochemical characteristics of N-belt peridotites indicate their origin from a suboceanic mantle formed within mid ocean ridge environment and are classified as ophiolitic peridotites. Dunites show different geochemical characteristics and may have been formed by different geological processes. The diverse lithology of ultramafics in the limited space of the S-belt indicates very heterogeneous nature of the subcontinental mantle. As a part of the CDOBs, peridotites from Banovina indicate that the CDOB record three different phases of ocean evolution, the early phase of the initial rift and opening of the ocean (S-belt peridotites), later phase of the already developed ocean (N-belt peridotites) and also the phase of ocean closure which is evident from the m&#233;lange occurrences.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.