Adipose-derived mesenchymal stem cells (ASCs) release factors beneficial for islets in vitro and protect against hyperglycemia in rodent models of diabetes. Oxygen tension has been shown to induce metabolic changes and alter ASCs' release of soluble factors. The effects of hypoxia on the antidiabetic properties of ASCs have not been explored. To investigate this, we incubated human ASCs for 48 h in 21% (normoxia) or 1% O 2 (hypoxia) and compared viability, cell growth, surface markers, differentiation capability, and soluble factors in the conditioned media (CM). Human islets were exposed to CM from ASCs incubated in either normoxia or hypoxia, and islet function and apoptosis after culture with or without proinflammatory cytokines were measured. To test hypoxic preconditioned ASCs' islet protective effects in vivo, ASCs were incubated for 48 h in normoxia or hypoxia before being injected into Balb/c Rag 1 -/-immunodeficient mice with streptozotocin-induced insulitis. Progression of diabetes and insulin content of pancreas were measured. We found that incubation in hypoxia was well tolerated by ASCs and that levels of VEGF-A, FGF-2, and bNGF were elevated in CM from ASCs incubated in hypoxia compared to normoxia, while levels of HGF, IL-8, and CXCL1 were reduced. CM from ASCs incubated in hypoxia significantly improved human islet function and reduced apoptosis after culture, and reduced cytokine-induced apoptosis. In our mouse model, pancreas insulin content was higher in both groups receiving ASCs compared to control, but the mice receiving preconditioned ASCs had lower random and fasting blood glucose, as well as improved oral glucose tolerance compared to untreated mice. In conclusion, our in vitro results indicate that the islet protective potential of ASCs improves in hypoxia, and we give insight into factors involved in this. Finally we show that hypoxic preconditioning potentiates ASCs' antidiabetic effect in vivo.
Aims/hypothesis Inflammatory signals and increased prostaglandin synthesis play a role during the development of diabetes. The prostaglandin D2 (PGD2) receptor, GPR44/DP2, is highly expressed in human islets and activation of the pathway results in impaired insulin secretion. The role of GPR44 activation on islet function and survival rate during chronic hyperglycaemic conditions is not known. In this study, we investigate GPR44 inhibition by using a selective GPR44 antagonist (AZ8154) in human islets both in vitro and in vivo in diabetic mice transplanted with human islets. Methods Human islets were exposed to PGD2 or proinflammatory cytokines in vitro to investigate the effect of GPR44 inhibition on islet survival rate. In addition, the molecular mechanisms of GPR44 inhibition were investigated in human islets exposed to high concentrations of glucose (HG) and to IL-1β. For the in vivo part of the study, human islets were transplanted under the kidney capsule of immunodeficient diabetic mice and treated with 6, 60 or 100 mg/kg per day of a GPR44 antagonist starting from the transplantation day until day 4 (short-term study) or day 17 (long-term study) post transplantation. IVGTT was performed on mice at day 10 and day 15 post transplantation. After termination of the study, metabolic variables, circulating human proinflammatory cytokines, and hepatocyte growth factor (HGF) were analysed in the grafted human islets. Results PGD2 or proinflammatory cytokines induced apoptosis in human islets whereas GPR44 inhibition reversed this effect. GPR44 inhibition antagonised the reduction in glucose-stimulated insulin secretion induced by HG and IL-1β in human islets. This was accompanied by activation of the Akt–glycogen synthase kinase 3β signalling pathway together with phosphorylation and inactivation of forkhead box O-1and upregulation of pancreatic and duodenal homeobox-1 and HGF. Administration of the GPR44 antagonist for up to 17 days to diabetic mice transplanted with a marginal number of human islets resulted in reduced fasting blood glucose and lower glucose excursions during IVGTT. Improved glucose regulation was supported by increased human C-peptide levels compared with the vehicle group at day 4 and throughout the treatment period. GPR44 inhibition reduced plasma levels of TNF-α and growth-regulated oncogene-α/chemokine (C-X-C motif) ligand 1 and increased the levels of HGF in human islets. Conclusions/interpretation Inhibition of GPR44 in human islets has the potential to improve islet function and survival rate under inflammatory and hyperglycaemic stress. This may have implications for better survival rate of islets following transplantation.
One of the key limitations to successful human islet transplantation is loss of islets due to stress responses pre- and post-transplantation. Nutrient deprivation and ER stress have been identified as important mechanisms leading to apoptosis. Glial Cell-line Derived Neurotrophic Factor (GDNF) has recently been found to promote islet survival after isolation. However, whether GDNF could rescue human islets from nutrient deprivation and ER stress-mediated apoptosis is unknown. Herein, by mimicking those conditions in vitro, we have shown that GDNF significantly improved glucose stimulated insulin secretion, reduced apoptosis and proinsulin:insulin ratio in nutrient deprived human islets. Furthermore, GDNF alleviated thapsigargin-induced ER stress evidenced by reduced expressions of IRE1α and BiP and consequently apoptosis. Importantly, this was associated with an increase in phosphorylation of PI3K/AKT and GSK3B signaling pathway. Transplantation of ER stressed human islets pre-treated with GDNF under kidney capsule of diabetic mice resulted in reduced expressions of IRE1α and BiP in human islet grafts with improved grafts function shown by higher levels of human C-peptide post-transplantation. We suggest that GDNF has protective and anti-apoptotic effects on nutrient deprived and ER stress activated human islets and could play a significant role in rescuing human islets from stress responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.