Differences in the overall dose distributions, as indicated by modeling changes in cognitive function, showed that a reduction in the lower-dose volumes or mean dose would have long-term, clinical advantages for children with MB, CR, and OPG.
Prediction of respiratory motion is essential for real-time tracking of lung or liver tumours in radiotherapy to compensate for system latencies. This study compares the performance of respiratory motion prediction based on linear regression (LR), neural networks (NN), kernel density estimation (KDE) and support vector regression (SVR) for various sampling rates and system latencies ranging from 0.2 to 0.6 s. Root-mean-squared prediction errors are evaluated on 12 3D lung tumour motion traces acquired at 30 Hz during radiotherapy treatments. The effect of stationary predictor training versus continuous predictor retraining as well as full 3D motion processing versus independent coordinate-wise motion processing is investigated. Model parameter optimization is performed through a grid search in the model parameter space for each predictor and all considered latencies, sampling rates, training schemes and 3D data-processing modes. Comparison of the predictors is performed in the clinically applicable setting of patient-independent model parameters. The considered predictors roughly halve the prediction errors compared to using no prediction. When averaging over all sampling rates and latencies, prediction errors normalized to errors of using no prediction of 0.44, 0.46, 0.49 and 0.55 for NN, SVR, LR and KDE are observed. The small differences between the predictors emphasize the relative importance of adequate model parameter optimization compared to the actual prediction model selection. Thorough model parameter tuning is therefore essential for fair predictor comparisons.
Radiation therapy to the prostate involves increasingly sophisticated delivery techniques and changing fractionation schedules. With a low estimated α/β ratio, a larger dose per fraction would be beneficial, with moderate fractionation schedules rapidly becoming a standard of care. The integration of a magnetic resonance imaging (MRI) scanner and linear accelerator allows for accurate soft tissue tracking with the capacity to replan for the anatomy of the day. Extreme hypofractionation schedules become a possibility using the potentially automated steps of autosegmentation, MRI-only workflow, and real-time adaptive planning. The present report reviews the steps involved in hypofractionated adaptive MRI-guided prostate radiation therapy and addresses the challenges for implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.