Explosive volcanic eruptions can loft ash, gases, and water into the stratosphere, which affects both human activities and the climate. Using geostationary satellite images of the 15 January 2022 eruption of the Hunga Tonga-Hunga Ha’apai volcano, we find that the volcanic plume produced by this volcano reached an altitude of 57 kilometers at its highest extent. This places the plume in the lower mesosphere and provides observational evidence of a volcanic eruption injecting material through the stratosphere and directly into the mesosphere. We then discuss potential implications of this injection and suggest that the altitude reached by plumes from previous eruptions, such as the eruption of Mount Pinatubo in 1991, may have been underestimated because of a lack of observational data.
Explosive volcanic eruptions can loft ash, gases and water into the stratosphere, which affects both human activities and the climate. Using geostationary satellite images of the January 2022 Hunga-Tonga volcano eruption we find that the volcanic cloud produced by this volcano reached an altitude of 57km at its highest extent. This places the cloud in the lower mesosphere and provides observational evidence of a volcanic eruption injecting material through the stratosphere and directly into the mesosphere. We then discuss potential implications of this injection and suggest that the altitude reached by plumes from previous eruptions, such as Pinatubo in 1991, are very likely to be underestimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.