ObjectivesTo test the reliability and reproducibility of a fast and user‐friendly voxel‐based 3D superimposition method and the effect of bone segmentation on its outcomes.Setting and sample populationThis prospective methodological study assessed 15 pairs of pre‐existing serial CBCT images (interval: 1.69 ± 0.37 years) obtained from growing patients (initial age: 11.75 ± 0.59 years).Materials and MethodsVolumes were superimposed on the anterior cranial base using Dolphin 3D software. Reliability was assessed visually, by inspecting the overlap of the superimposition reference structures. Reproducibility was tested with intra‐ and inter‐operator comparisons of superimposition outcomes.ResultsThe method presented good reliability in all cases. The median differences between intra‐ and inter‐operator comparisons at various tested areas ranged from 0.06 to 0.16 mm and from 0.15 to 0.24 mm, respectively. In few individual cases, differences exceeded 0.5 mm. There was no evidence that the error increased upon increase in the magnitude of the detected T0‐T1 changes. However, the superimposition error increased when the distance between the measurement area and the superimposition reference also increased. For a single image, the median error of bone surface segmentation ranged in different areas between 0.05 and 0.12 mm, with few exceptions where it slightly exceeded 0.25 mm.ConclusionsThe tested voxel‐based superimposition method presented good efficiency, cranial base matching and reproducibility in a growing patient sample. Segmentation error was considered minimal. The total error reached clinically relevant levels in very few cases. Thus, this technique is considered appropriate for clinical use, when 3D assessment of craniofacial changes is required.
The aim of this investigation was to evaluate the reproducibility of a voxel-based 3-dimensional superimposition method and the effect of segmentation error on determining soft tissue surface changes. Methods: A total of 15 pairs of serial cone-beam computed tomography images (interval: 1.69 6 0.37 years) from growing subjects (initial age: 11.75 6 0.59 years) were selected from an existing digital database. Each pair was superimposed on the anterior cranial base, in 3 dimensions with Dolphin 3D software (version 2.1.6079.17633; Dolphin Imaging & Management Solutions, Chatsworth, Calif). The reproducibility of superimposition outcomes and surface segmentation were tested with intra-and interoperator comparisons. Results: Median differences in inter-and intrarater measurements at various areas presented a range of 0.08-0.21 mm. In few instances, the differences were larger than 0.5 mm. In areas where T0-T1 changes were increased, the error did not appear to increase. However, the method error increased the farther the measurement area was from the superimposition reference structure. For individual images, the median soft tissue segmentation error ranged from 0.05 to 0.06 at various areas and in no subject exceeded 0.13 mm. Conclusions: The presented voxel-based superimposition method was efficient and well reproducible. The segmentation process was a minimal source of error; however, there were a few cases in which the total error was more than 0.5 mm and could be considered clinically significant. Therefore, this method can be used clinically to assess 3-dimensional soft tissue changes during orthodontic treatment in growing patients.
Currently, the primary techniques applied for the assessment of facial changes over time utilize 2D images. However, this approach has important limitations related to the dimensional reduction and the accuracy of the used data. 3D facial photography has been recently introduced as a risk-free alternative that overcomes these limitations. However, the proper reference areas that should be used to superimpose serial 3D facial images of growing individuals are not yet known. Here, we tested various 3D facial photo superimposition reference areas and compared their outcomes to those of a standard anterior cranial base superimposition technique. We found that a small rectangular area on the forehead plus an area including the middle part of the nose and the lower wall of the orbital foramen provided comparable results to the standard technique and showed adequate reproducibility. Other reference areas that have been used so far in the literature were less reliable. Within the limitations of the study, a valid superimposition reference area for serial 3D facial images of growing individuals is suggested. The method has potential to greatly expand the possibilities of this highly informative, risk free, and easily obtained 3D tool for the assessment of facial changes in growing individuals.
Currently, the primary techniques applied for the assessment of facial changes over time utilize 2D images. However, this approach has important limitations related to the dimensional reduction and the accuracy of the used data. 3D facial photography has been recently introduced as a risk-free alternative that overcomes these limitations. However, the proper reference areas that should be used to superimpose serial 3D facial images of growing individuals are not yet known. Here, we tested various 3D facial photo superimposition reference areas and compared their outcomes to those of a standard anterior cranial base superimposition technique. We found that a small rectangular area on the forehead plus an area including the middle part of the nose and the lower wall of the orbital foramen provided comparable results to the standard technique and showed adequate reproducibility. Other reference areas that have been used so far in the literature were less reliable. This is the first study to identify a valid superimposition reference area for serial 3D facial images of growing individuals. The utilization of the suggested method greatly expands the possibilities of this highly informative, risk free, and easily obtained 3D tool for the assessment of facial changes in growing individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.