This paper proposes an algorithm for learning to move the desired object by humanoid robots. In this algorithm, the semantic segmentation algorithm and Deep Reinforcement Learning (DRL) algorithms are combined. The semantic segmentation algorithm is used to detect and recognize the object be moved. DRL algorithms are used at the walking and grasping steps. Deep Q Network (DQN) is used to walk towards the target object by means of the previously defined actions at the gate manager and the different head positions of the robot. Deep Deterministic Policy Gradient (DDPG) network is used for grasping by means of the continuous actions. The previously defined commands are finally assigned for the robot to stand up, turn left side and move forward together with the object. In the experimental setup, the Robotis-Op3 humanoid robot is used. The obtained results show that the proposed algorithm has successfully worked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.