Diabetes can induce diseases including diabetic retinopathy, cataracts, glaucoma, etc. The blindness caused by these diseases is irreversible. Early analysis of retinal fundus images, including optic disc and optic cup detection and retinal blood vessel segmentation, can effectively identify these diseases. The existing methods lack sufficient discrimination power for the fundus image and are easily affected by pathological regions. This paper proposes a novel multi-path recurrent U-Net architecture to achieve the segmentation of retinal fundus images. The effectiveness of the proposed network structure was proved by two segmentation tasks: optic disc and optic cup segmentation and retinal vessel segmentation. Our method achieved state-of-the-art results in the segmentation of the Drishti-GS1 dataset. Regarding optic disc segmentation, the accuracy and Dice values reached 0.9967 and 0.9817, respectively; as regards optic cup segmentation, the accuracy and Dice values reached 0.9950 and 0.8921, respectively. Our proposed method was also verified on the retinal blood vessel segmentation dataset DRIVE and achieved a good accuracy rate.
The incidence of skin cancer around the world is increasing year by year. However, early diagnosis and treatment can greatly improve the survival rate of patients. Skin lesion boundary segmentation is essential to accurately locate lesion areas in dermatoscopic images. It is true that accurate segmentation of skin lesions is still challenging dues to problems such as blurred borders, which requires an accurate and automatic skin lesion segmentation method. In this paper, we propose an end-to-end framework which can perform skin lesion segmentation automatically and efficiently, called the CSARM-CNN (Channel & Spatial Attention Residual Module) model. Each CSARM block of the model combines channel attention and spatial attention to form a new attention module to enhance segmentation results. The multi-scale input images are obtained by the spatial pyramid pooling. Finally, a weighted cross-entropy loss function is used at each side of the output layer to sum the total loss of the model. We evaluated in two published standard datasets, ISIC 2017 and PH2, and achieved competitive results in terms of specificity and accuracy, with 99.03% and 99.45% specificity, 94.96% and 95.23% accuracy, respectively. INDEX TERMS Deep convolutional neural network, multi-scale, attention mechanism, skin lesion segmentation.
The automatic segmentation of skin lesions is considered to be a key step in the diagnosis and treatment of skin lesions, which is essential to improve the survival rate of patients. However, due to the low contrast, the texture and boundary are difficult to distinguish, which makes the accurate segmentation of skin lesions challenging. To cope with these challenges, this paper proposes an attention-guided network with densely connected convolution for skin lesion segmentation, called CSAG and DCCNet. In the last step of the encoding path, the model uses densely connected convolution to replace the ordinary convolutional layer. A novel attention-oriented filter module called Channel Spatial Fast Attention-guided Filter (CSFAG for short) was designed and embedded in the skip connection of the CSAG and DCCNet. On the ISIC-2017 data set, a large number of ablation experiments have verified the superiority and robustness of the CSFAG module and Densely Connected Convolution. The segmentation performance of CSAG and DCCNet is compared with other latest algorithms, and very competitive results have been achieved in all indicators. The robustness and cross-data set performance of our method was tested on another publicly available data set PH2, further verifying the effectiveness of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.