During a screening of beneficial rhizobacteria strains with capability of suppressing Fusarium root rot and improving bean yield, 680 bacteria belonging to Bacillus, fluorescent and non-fluorescent Pseudomonas, and Rhizobium were isolated from commercial field soils and plant root nodules in Zanjan province, Iran. Of these, two hundred representative isolates were biochemically characterized and screened in vitro for inhibiting mycelia growth of Fusarium solani f. sp. phaseoli. Sixteen rhizobacteria isolates were able to strongly inhibit fungal growth. Five promising rhizobacteria were evaluated for suppressing the disease and promoting plant growth in greenhouse plants. Mixed inoculation of rhizobacteria caused greater increases in disease suppression, dry and fresh matter weight of plant (aerial part) and root, plant height, and pod number per plant compared to diseased control and absolute control. Treatments involving Bacillus subtilis produced higher number of pods compared to other single and dual treatments, except for Rhizobium-Pseudomonas treatment. Treating with rhizobacteria decreased disease severity ratings by 50 to 62% compared to untreated plants. Further examination of the rhizobacteria under field conditions is required to uncover their efficacy in biofertilization and viability as biocontrol agent in bean crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.