Ineffective hematopoiesis is a major characteristic of myelodysplastic syndromes (MDS) causing relevant morbidity and mortality. Mesenchymal stromal cells (MSC) have been shown to physiologically support hematopoiesis, but their contribution to the pathogenesis of MDS remains elusive. We show that MSC from patients across all MDS subtypes (n=106) exhibit significantly reduced growth and proliferative capacities accompanied by premature replicative senescence. Osteogenic differentiation was significantly reduced in MDS-derived MSC, indicated by cytochemical stainings and reduced expressions of Osterix and Osteocalcin. This was associated with specific methylation patterns that clearly separated MDS-MSC from healthy controls and showed a strong enrichment for biological processes associated with cellular phenotypes and transcriptional regulation. Furthermore, in MDS-MSC, we detected altered expression of key molecules involved in the interaction with hematopoietic stem and progenitor cells (HSPC), in particular Osteopontin, Jagged1, Kit-ligand and Angiopoietin as well as several chemokines. Functionally, this translated into a significantly diminished ability of MDS-derived MSC to support CD34+ HSPC in long-term culture-initiating cell assays associated with a reduced cell cycle activity. Taken together, our comprehensive analysis shows that MSC from all MDS subtypes are structurally, epigenetically and functionally altered, which leads to impaired stromal support and seems to contribute to deficient hematopoiesis in MDS.
The neoplastic stromal cells of giant cell tumor of bone (GCTB) carry a mutation in H3F3A, leading to a mutant histone variant, H3.3-G34W, as a sole recurrent genetic alteration. We show that in patient-derived stromal cells H3.3-G34W is incorporated into the chromatin and associates with massive epigenetic alterations on the DNA methylation, chromatin accessibility and histone modification level, that can be partially recapitulated in an orthogonal cell line system by the introduction of H3.3-G34W. These epigenetic alterations affect mainly heterochromatic and bivalent regions and provide possible explanations for the genomic instability, as well as the osteolytic phenotype of GCTB. The mutation occurs in differentiating mesenchymal stem cells and associates with an impaired osteogenic differentiation. We propose that the observed epigenetic alterations reflect distinct differentiation stages of H3.3 WT and H3.3 MUT stromal cells and add to H3.3-G34W-associated changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.