ABSTRACT. Answering an open question affirmatively it is shown that every ergodic invariant measure of a mean equicontinuous (i.e. mean-L-stable) system has discrete spectrum. Dichotomy results related to mean equicontinuity and mean sensitivity are obtained when a dynamical system is transitive or minimal.Localizing the notion of mean equicontinuity, notions of almost mean equicontinuity and almost Banach mean equicontinuity are introduced. It turns out that a system with the former property may have positive entropy and meanwhile a system with the later property must have zero entropy.
We explore connections among the regional proximal relation, the asymptotic relation, and the distal relation for a topological dynamical system with the shadowing property and show that if a Devaney chaotic system has the shadowing property then it is distributionally chaotic.
ABSTRACT. Let (X, T ) be a topological dynamical system. A pair of points (x, y) ∈ X 2 is called Banach proximal if for any ε > 0, the set {n ∈ Z + : d(T n x, T n y) < ε} has Banach density one. We study the structure of the Banach proximal relation. An useful tool is the notion of the support of a topological dynamical system. We show that a dynamical system is strongly proximal if and only if every pair in X 2 is Banach proximal. A subset S of X is Banach scrambled if every two distinct points in S form a Banach proximal pair but not asymptotic. We construct a dynamical system with the whole space being a Banach scrambled set. Even though the Banach proximal relation of the full shift is of first category, it has a dense Mycielski invariant Banach scrambled set. We also show that for an interval map it is Li-Yorke chaotic if and only if it has a Cantor Banach scrambled set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.