This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A mud volcano (MV) is a naturally hydrocarbon-spiked environment, as indicated by the presence of various quantities of PAHs and aromatic isotopic shifts in its sediments. Recurrent expulsion of various hydrocarbons consolidates the growth of hydrocarbonoclastic bacterial communities in the areas around MVs. In addition to the widely-known availability of biologically malleable alkanes, MVs can represent hotbeds of polyaromatic hydrocarbons (PAHs), as well -an aspect that has not been previously explored. This study measured the availability of highly recalcitrant PAHs and the isotopic signature of MV sediments both by Gc-MS and δ 13 C analyses. Subsequently, this study highlighted both the occurrence and distribution of putative pAH-degrading bacterial otUs using a metabarcoding technique. The putative hydrocarbonoclastic taxa incidence are the following: Enterobacteriaceae (31.5%), Methylobacteriaceae (19.9%), Bradyrhizobiaceae (16.9%), Oxalobacteraceae (10.2%), Comamonadaceae (7.6%) and Sphingomonadaceae (5.5%). Cumulatively, the results of this study indicate that MVs represent polyaromatic hydrocarbonoclastic hotbeds, as defined by both natural PAH input and high incidence of putative PAH-degrading bacterial OTUs.
In the present study, a simple procedure for the isolation by solid-phase extraction (SPE) and quantification by UV-Vis spectrometry (400 nm) of the humic acids (HAs) in the natural waters was developed. Seven different sorbents: Porapak P (polystyrene-divinylbenzene copolymer), Florisil (chemical composition: 84.0% SiO2, 15.5% MgO and 0.5% Na2SO4), Silica gel C18 (octadecyl silane), Strata X (surface modified polystyrene-divinylbenzene), Strata NH2 (silica-based trifunctional amino ligand), Strata SAX (silica-based trifunctional quaternary amine) and Strata C18-E (silica-based trifunctional C18 with hydrophobic end-capping of silanols) were tested. The HAs, adsorbed on SPE cartridges, were eluted using: NaOH (0.1 M), sodium dodecyl sulphate (SDS) (20 g L−1), and a 1:1 v/v mixture of SDS (20 g L−1) and NaOH (0.1 M). The extraction efficiency was evaluated by comparing the HAs recovery levels. The repeatability of results was estimated by the relative standard deviation (RSD). The data confirmed that Porapak P, Silica gel C18, Florisil, Strata NH2 and Strata X could be good alternatives for the traditional isolation of the aquatic HAs with XAD resin. The proposed method was applied for the determination of HAs in some waters sampled from the Western Romanian Plain. The content of HAs was correlated with the arsenic concentration and total organic carbon (TOC) level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.