Doppler ultrasound, ultrasound M-mode analysis, fetal electrocardiography, and fetal magnetocardiography are methods by which the fetal heart can be monitored non-invasively. In this paper, they are evaluated and compared. Customarily, it is solely the fetal heart rate, which is monitored using the Doppler ultrasound technique since it is both simple to use and cheap. However, this method inherently produces an averaged heart rate and therefore cannot give the beat-to-beat variability. Fetal electrocardiography has similar advantages, but in addition offers the potential for monitoring beat-to-beat variability and performing electrocardiogram morphological analysis. Its disadvantage is that its reliability is only 60%, although it is the only technique that offers truly long-term ambulatory monitoring. Ultrasound M-mode analysis allows a estimation of atrial and ventricular coordination, as well as an estimation of PR intervals. Bradycardias, supraventricular tachycardias, extra systoles are readily diagnosed using this method although timing will be inaccurate. Fetal magnetocardiograms can be detected reliably and used for accurate beat-to-beat measurements and morphological analysis. Consequently, they can be used for the classification of arrhythmias and the diagnosis of a long QT syndrome and some congenital heart diseases.
Knowledge of the content of Doppler ultrasound signals from the fetal heart is essential if the performance of fetal heart rate (FHR) monitors based upon this technology is to be improved. For this reason instrumentation was constructed to enable the simultaneous collection of Doppler audio signals and the transabdominal fetal ECG (for signal registration), with a total of 22 recordings being made with an average length of around 20 minutes. These data demonstrate the transient nature of the Doppler audio data with wide variations in the signal content observable on a beat-to-beat basis. Short-time Fourier analysis enabled the content of the Doppler signals to be linked to six cardiac events, four valve and two wall motions, with higher frequency components being associated with the latter. This differing frequency content together with information regarding the direction of movement that can be discerned from Doppler signals provided a potential means of discriminating between these six events (which are unlikely to all contribute to the Doppler signal within the same cardiac cycle). Analysis of 100 records showed that wall contractions generate the most prominent signals, with atrial contraction recognisable in all records and ventricular wall contraction in 95% (although its amplitude is only around 30% of that of the atrial signal). Valve motion, with amplitudes between 15 and 25% that of the atrial wall signal, were visible in 75% of records. These results suggest means by which the six events that contribute to the Doppler signal may be distinguished, providing information that should enable an improvement in the current performance of Doppler ultrasound-based FHR monitors.
A means of monitoring foetal heart rate (FHR) during magnetic resonance imaging (MRI) is presented. Foetal heart rate was measured using a modified standard Doppler ultrasound based monitor. The transducer and lead from the monitor required alteration to reduce interference and distortion in the MR images to acceptable levels. These changes enabled high quality images to be produced with insignificant additional noise and distortion when the foetal heart rate was recorded simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.