Novobiocin is an antibiotic which binds to a 24 kDa fragment from the B subunit of DNA gyrase. Naturally occurring resistance arises from mutation of Arg-136 which hydrogen bonds to the coumarin ring of novobiocin. We have applied calorimetry to characterize the binding of novobiocin to wild-type and R136H mutant 24 kDa fragments. Upon mutation, the Kd increases from 32 to 1200 nM at 300 K. The enthalpy of binding is more favorable for the mutant (DeltaH degrees shifts from -12.1 to -17.5 kcal/mol), and the entropy of binding is much less favorable (TDeltaS degrees changes from -1.8 to -9.4 kcal/mol). Both of these changes are in the direction opposite to that expected if the loss of the Arg residue reduces hydrogen bonding. The change in heat capacity at constant pressure upon binding (DeltaCp) shifts from -295 to -454 cal mol-1 K-1. We also report the crystal structure, at 2.3 A resolution, of a complex between the R136H 24 kDa fragment and novobiocin. Although the change in DeltaCp often would be interpreted as reflecting increased burial of hydrophobic surface on binding, this structure reveals a small decrease. Furthermore, an ordered water molecule is sequestered into the volume vacated by removal of the guanidinium group. There are large discrepancies when the measured thermodynamic parameters are compared to those estimated from the structural data using empirical relationships. These differences seem to arise from the effects of sequestering ordered water molecules upon complexation. The water-mediated hydrogen bonds linking novobiocin to the mutant protein make a favorable enthalpic contribution, whereas the immobilization of the water leads to an entropic cost and a reduction in the heat capacity of the system. Such a negative contribution to DeltaCp, DeltaH degrees , and TDeltaS degrees appears to be a general property of water molecules that are sequestered when ligands bind to proteins.
N-myristoyl transferase (NMT) catalyzes the transfer of the fatty acid myristate from myristoyl-CoA to the N-terminal glycine of substrate proteins, and is found only in eukaryotic cells. The enzyme in this study is the 451 amino acid protein produced by Candida albicans, a yeast responsible for the majority of systemic infections in immuno-compromised humans. NMT activity is essential for vegetative growth, and the structure was determined in order to assist in the discovery of a selective inhibitor of NMT which could be developed as an anti-fungal drug. NMT has no sequence homology with other protein sequences and has a novel alpha/beta fold which shows internal two-fold symmetry, which may be a result of gene duplication. On one face of the protein there is a long, curved, relatively uncharged groove, at the center of which is a deep pocket. The pocket floor is negatively charged due to the vicinity of the C-terminal carboxylate and a nearby conserved glutamic acid residue, which separates the pocket from a cavity. These observations, considered alongside the positions of residues whose mutation affects substrate binding and activity, suggest that the groove and pocket are the sites of substrate binding and the floor of the pocket is the catalytic center.
Coumarin antibiotics, such as clorobiocin, novobiocin, and coumermycin A1, inhibit the supercoiling activity of gyrase by binding to the gyrase B (GyrB) subunit. Previous crystallographic studies of a 24-kDa N-terminal domain of GyrB from E. coli complexed with novobiocin and a cyclothialidine analogue have shown that both ligands act by binding at the ATP-binding site. Clorobiocin is a natural antibiotic isolated from several Streptomyces strains and differs from novobiocin in that the methyl group at the 8 position in the coumarin ring of novobiocin is replaced by a chlorine atom, and the carbamoyl at the 3' position of the noviose sugar is substituted by a 5-methyl-2-pyrrolylcarbonyl group. To understand the difference in affinity, in order that this information might be exploited in rational drug design, the crystal structure of the 24-kDa GyrB fragment in complex with clorobiocin was determined to high resolution. This structure was determined independently in two laboratories, which allowed the validation of equivalent interpretations. The clorobiocin complex structure is compared with the crystal structures of gyrase complexes with novobiocin and 5'-adenylyl-beta, gamma-imidodiphosphate, and with information on the bound conformation of novobiocin in the p24-novobiocin complex obtained by heteronuclear isotope-filtered NMR experiments in solution. Moreover, to understand the differences in energetics of binding of clorobiocin and novobiocin to the protein, the results from isothermal titration calorimetry are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.