In this contribution, an approach for the characterization of various fiber-based slit homogenizer devices in the NIR and SWIR is shown. The devices are to be tested for use in a satellite-based spectrometer for spatial monitoring of anthropogenic greenhouse gases. This leads to the characterization requirement for temporal coherence and spatial incoherence. Speckle noise has to be reduced to a very low level, which is achieved using a fixed diffusor in combination with a rotating diffusor and a tunable (wavelength) laser as well as temporal averaging. Remaining variations due to unwanted interferences at the imager are removed by controlled movement of the sensor with an automated micro positioning stage in combination with image processing. The design, realization and characterization of the measurement breadboard as well as near field homogenization results for different input scenes and polarizations are shown. Additionally, the geometric characteristics and the depolarization effect of the fibers are investigated for a homogeneous input scene. Furthermore, a setup and measurement results concerning the focal ratio degradation of the fibers are presented.
The computed tomography imaging spectrometer (CTIS) is a relatively unknown snapshot hyperspectral camera. It utilizes computational imaging approaches to gain the hyperspectral image from a spatiospectral smeared sensor image. We present a strongly miniaturized system with a dimension of only 36mm x 40.5mm x 52.8mm and a diagonal field of view of 29°. We achieve this using a Galilean beam expander and a combination of off-the-shelf lenses, a highly aspherical imaging system from a commercial smartphone and a 13 MP monochrome smartphone image sensor. The reconstructed hyperspectral image has a spatial resolution of 400 x 300 pixel with 39 spectral channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.