In humans, the clinical and molecular characterization of sporadic syndromes is often hindered by the small number of patients and the difficulty in developing animal models for severe dominant conditions. Here we show that the availability of large data sets of whole-genome sequences, high-density SNP chip genotypes and extensive recording of phenotype offers an unprecedented opportunity to quickly dissect the genetic architecture of severe dominant conditions in livestock. We report on the identification of seven dominant de novo mutations in CHD7, COL1A1, COL2A1, COPA, and MITF and exploit the structure of cattle populations to describe their clinical consequences and map modifier loci. Moreover, we demonstrate that the emergence of recessive genetic defects can be monitored by detecting de novo deleterious mutations in the genome of bulls used for artificial insemination. These results demonstrate the attractiveness of cattle as a model species in the post genomic era, particularly to confirm the genetic aetiology of isolated clinical case reports in humans.
BackgroundThe widespread use of individual sires for artificial insemination promotes the propagation of recessive conditions. Inadvertent matings between unnoticed carriers of deleterious alleles may result in the manifestation of fatal phenotypes in their progeny. Breeding consultants and farmers reported on Vorderwald calves with a congenital skin disease. The clinical findings in affected calves were compatible with epidermolysis bullosa.ResultsPedigree analysis indicated autosomal recessive inheritance of epidermolysis bullosa in Vorderwald cattle. We genotyped two diseased and 41 healthy animals at 41,436 single nucleotide polymorphisms and performed whole-genome haplotype-based association testing, which allowed us to map the locus responsible for the skin disease to the distal end of bovine chromosome 22 (P = 8.0 × 10−14). The analysis of whole-genome re-sequencing data of one diseased calf, three obligate mutation carriers and 1682 healthy animals from various bovine breeds revealed a nonsense mutation (rs876174537, p.Arg1588X) in the COL7A1 gene that segregates with the disease. The same mutation was previously detected in three calves with dystrophic epidermolysis bullosa from the Rotes Höhenvieh cattle breed. We show that diseased animals from Vorderwald and Rotes Höhenvieh cattle are identical by descent for an 8.72 Mb haplotype encompassing rs876174537 indicating they inherited the deleterious allele from a recent common ancestor.ConclusionsAutosomal recessive epidermolysis bullosa in Vorderwald and Rotes Höhenvieh cattle is caused by a nonsense mutation in the COL7A1 gene. Our findings demonstrate that deleterious alleles may segregate across cattle populations without apparent admixture. The identification of the causal mutation now enables the reliable detection of carrier animals. Genome-based mating strategies can avoid inadvertent matings of carrier animals thereby preventing the birth of homozygous calves that suffer from a painful skin disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-016-0458-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.