Patients with breast cancer along with metastatic estrogen and progesterone receptor (ER/PR)- and human epidermal growth factor receptor 2 (HER2)-negative tumors are referred to as having metastatic triple-negative breast cancer (mTNBC) disease. Although there have been many new treatment options approved by the Food and Drug Administration for ER/PR-positive and Her2/neu-amplified metastatic breast cancer, relatively few new agents have been approved for patients with mTNBC. There have been several head-to-head chemotherapy trials performed within the metastatic setting, and much of what is applied in clinical practice is extrapolated from chemotherapy trials in the adjuvant setting, with taxanes and anthracyclines incorporated early on in the patient’s treatment course. Select synergistic combinations can produce faster and more significant response rates compared with monotherapy and are typically used in the setting of visceral threat or symptomatic disease. Preclinical studies have implicated other possible targets and mechanisms in mTNBC. Ongoing clinical trials are underway assessing new chemotherapeutic strategies and agents, including targeted therapy and immunotherapy. In this review, we evaluate the standard systemic and future treatment options in mTNBC.
Purpose Patients who are diagnosed with stage IV metastatic melanoma have an estimated 5-year relative survival rate of only 17%. Randomized controlled trials of recent US Food and Drug Administration-approved immune checkpoint inhibitors-pembrolizumab (PEM), nivolumab (NIVO), and ipilumumab (IPI)-demonstrate improved patient outcomes, but the optimal treatment sequence in patients with BRAF wild-type metastatic melanoma remains unclear. To inform policy makers about the value of these treatments, we developed a Markov model to compare the cost-effectiveness of different strategies for sequencing novel agents for the treatment of advanced melanoma. Materials and Methods We developed Markov models by using a US-payer perspective and lifetime horizon to estimate costs (2016 US$) and quality-adjusted life years (QALYs) for treatment sequences with first-line NIVO, IPI, NIVO + IPI, PEM every 2 weeks, and PEM every 3 weeks. Health states were defined for initial treatment, first and second progression, and death. Rates for drug discontinuation, frequency of adverse events, disease progression, and death obtained from randomized phase III trials were used to determine the likelihood of transition between states. Deterministic and probabilistic sensitivity analyses were conducted to evaluate model uncertainty. Results PEM every 3 weeks followed by second-line IPI was both more effective and less costly than dacarbazine followed by IPI then NIVO, or IPI followed by NIVO. Compared with the first-line dacarbazine treatment strategy, NIVO followed by IPI produced an incremental cost effectiveness ratio of $90,871/QALY, and first-line NIVO + IPI followed by carboplatin plus paclitaxel chemotherapy produced an incremental cost effectiveness ratio of $198,867/QALY. Conclusion For patients with treatment-naive BRAF wild-type advanced melanoma, first-line PEM every 3 weeks followed by second-line IPI or first-line NIVO followed by second-line IPI are the most cost-effective, immune-based treatment strategies for metastatic melanoma.
Aim To evaluate, from a US payer perspective, the cost-effectiveness of treatment strategies for metastatic colorectal cancer (mCRC). Methods We performed a systematic review of published cost-effectiveness analyses of treatment strategies for mCRC with pre-specified search criteria. Results We identified 14 papers that fulfilled our search criteria and revealed varying levels of value amongst current treatment strategies. Older agents such as 5FU, irinotecan, and oxaliplatin provide high value treatments. More modern agents targeting the EGFR or VEGF pathways, such as bevacizumab, cetuximab and panitumumab do not appear to be cost effective treatments at their current costs. The analytical methods used within the papers varied widely, and likely plays a significant role in the heterogeneity in incremental cost effectiveness ratios. Conclusions The cost-effectiveness of current treatment strategies for mCRC is highly variable. Drugs recently approved by the Federal Drug Administration (FDA) for mCRC are not cost-effective, and this is primarily driven by high drug costs.
Purpose Based on available phase III trial data, we performed a cost-effectiveness analysis of different treatment strategies that can be used in patients with newly diagnosed HER2-positive metastatic breast cancer (mBC). Patients and Methods We constructed a Markov model to assess the cost-effectiveness of four different HER2 targeted treatment sequences in patients with HER2-positive mBC treated in the U.S. The model followed patients weekly over their remaining life expectancies. Health states considered were progression free survival (PFS) 1st to 3rd lines, and death. Transitional probabilities were based on published phase III trials. Cost data (2015 US dollars) was captured from the U.S. Centers for Medicare and Medicaid Services (CMS) drug payment table and physician fee schedule. Health utility data were extracted from published studies. The outcomes considered were PFS, OS, costs, QALYs, the incremental cost per QALY gained ratio, and the net monetary benefit. Deterministic and probabilistic sensitivity analyses assessed the uncertainty around key model parameters and their joint impact on the base-case results. Results The combination of trastuzumab, pertuzumab, and docetaxel (THP) as first-line therapy, trastuzumab emtansine (T-DM1) as second-line therapy, and lapatinib/capecitabine third-line resulted in 1.81 QALYs, at a cost of $335,231.35. The combination of trastuzumab/docetaxel as first line without subsequent T-DM1 or pertuzumab yielded 1.41 QALYs, at a cost of $175,240.69. The least clinically effective sequence (1.27 QALYs), but most cost-effective at a total cost of $149,250.19, was trastuzumab/docetaxel as first-line therapy, T-DM1 as second-line therapy, and trastuzumab/lapatinib as third line therapy. Conclusion Our results suggest that THP as first-line therapy, followed by T-DM1 as second-line therapy, would require at least a 50% reduction in the total drug acquisition cost for it to be considered a cost-effective strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.