Automatic analysis of Sentinel image time series is recommended for monitoring agricultural land use in Europe. To improve classification capacities, we propose a temporal structured classification combining Sentinel images and former vintages of the Land-Parcel Identification System. Inter-annual crop rotations are learned and combined with the satellite images using a Conditional Random Field. The proposed methodology is tested on a 233 km 2 study area located in France and with a 25 categories national nomenclature. The classification results are globally improved.
Leveraging the recent availability of accurate, frequent, and multimodal (radar and optical) Sentinel-1 and -2 acquisitions, this paper investigates the automation of land parcel identi- fication system (LPIS ) crop type classification. Our approach allows for the automatic integration
of temporal knowledge, i.e., crop rotations using existing parcel-based land cover databases and multi-modal Sentinel-1 and -2 time series. The temporal evolution of crop types was modeled with a linear- chain conditional random field, trained with time series of multi-modal (radar and optical)
satellite acquisitions and associated LPIS. Our model was tested on two study areas in France (≥ 1250 km2) which show different crop types, various parcel sizes, and agricultural practices: . the Seine et Marne and the Alpes de Haute-Provence classified accordingly to
a fine national 25-class nomenclature. We first trained a Random Forest classifier without temporal structure to achieve 89.0% overall accuracy in Seine et Marne (10 classes) and 73% in Alpes de Haute-Provence (14 classes). We then demonstrated experimentally that taking into account the temporal
structure of crop rotation with our model resulted in an increase of 3% to +5% in accuracy. This increase was especially important (+12%) for classes which were poorly classified without using the temporal structure. A stark posi- tive impact was also demonstrated on permanent crops, while
it was fairly limited or even detrimental for annual crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.