In humans and in foveated animals visual acuity is highly concentrated at the center of gaze, so that choosing where to look next is an important example of online, rapid decision-making. Computational neuroscientists have developed biologically-inspired models of visual attention, termed saliency maps, which successfully predict where people fixate on average. Using point process theory for spatial statistics, we show that scanpaths contain, however, important statistical structure, such as spatial clustering on top of distributions of gaze positions. Here, we develop a dynamical model of saccadic selection that accurately predicts the distribution of gaze positions as well as spatial clustering along individual scanpaths. Our model relies on activation dynamics via spatially-limited (foveated) access to saliency information, and, second, a leaky memory process controlling the re-inspection of target regions. This theoretical framework models a form of context-dependent decision-making, linking neural dynamics of attention to behavioral gaze data.
The role of sensory systems is to provide an organism with information about its environment. Because sensory information is noisy and insufficient to uniquely determine the environment, natural perceptual systems have to cope with systematic uncertainty. The extent of that uncertainty is often crucial to the organism: for instance, in judging the potential threat in a stimulus. Inducing uncertainty by using visual noise, we had human observers perform a task where they could improve their performance by choosing the less uncertain among pairs of visual stimuli. Results show that observers had access to a reliable measure of visual uncertainty in their decision-making, showing that subjective uncertainty in this case is connected to objective uncertainty. Based on a Bayesian model of the task, we discuss plausible computational schemes for that ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.