Planning cost-effective logistics operations involve the integration of multiple decision-making levels. In the domain of supply chain management, the last decades have seen the emergence of 3PL service providers that specialize in integrating warehousing and transportation services. In this paper, we study the operations performed by a 3PL in the supply chain management of a French restaurant chain. The transportation planning process is assisted by solving the Logistics Service Network Design Problem (LSNDP). As realistic instances are too large for on-the-shelf optimization solvers to solve in acceptable run-times, we develop a network reduction heuristic inspired by the recent Dynamic Discretization Discovery algorithm. Through an extensive series of experiments carried out on instances based on the operations of an industrial partner, we demonstrate the efficiency of the proposed approach. We also investigate the impact of the distribution strategy used in practice to determine the transportation plan and how this distribution strategy can be modified to reduce the overall logistics costs.
Supply chain transportation operations often account for a large proportion of product total cost to market. Such operations can be optimized by solving the Logistics Service Network Design Problem (LSNDP), wherein a logistics service provider seeks to cost-effectively source and fulfill customer demands of products within a multi-echelon distribution network. However, many industrial settings yield instances of the LSNDP that are too large to be solved in reasonable run-times by off-the-shelf optimization solvers. We introduce an exact Benders decomposition algorithm based on partial decompositions that strengthen the master problem with information derived from aggregating subproblem data. More specifically, the proposed Meta Partial Benders Decomposition intelligently switches from one master problem to another by changing both the amount of subproblem information to include in the master as well as how it is aggregated. Through an extensive computational study, we show that the approach outperforms existing benchmark methods and we demonstrate the benefits of dynamically refining the master problem in the course of a partial Benders decomposition-based scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.