The use of lake sedimentary DNA to track the long-term changes in both terrestrial and aquatic biota is a rapidly advancing field in paleoecological research. Although largely applied nowadays, knowledge gaps remain in this field and there is therefore still research to be conducted to ensure the reliability of the sedimentary DNA signal. Building on the most recent literature and seven original case studies, we synthesize the state-of-the-art analytical procedures for effective sampling, extraction, amplification, quantification and/or generation of DNA inventories from sedimentary ancient DNA (sedaDNA) via high-throughput sequencing technologies. We provide recommendations based on current knowledge and best practises.
Seismic hazard assessment is a critical but challenging issue for modern societies. A key parameter to be estimated is the recurrence interval of damaging earthquakes. This requires the establishment of earthquake records long enough to be relevant, i.e., far longer than historical observations. We study how lake sediments can be used for this purpose and explore conditions that enable lake sediments to record earthquakes. This was achieved (i) through the compilation of eight lake-sediment sequences from the European Alps to reconstruct chronicles of mass movement deposits and (ii) through the comparison of these chronicles with the well-documented earthquake history. This allowed 24 occurrences of mass movements to be identified, of which 21 were most probably triggered by an earthquake. However, the number of earthquake-induced deposits varies between lakes of a same region, suggesting variable thresholds of the lake sequences to record earthquake shaking. These thresholds have been quantified by linking the mass movement occurrences in a single lake to both intensity and distance of the triggering earthquakes. This method offers a quantitative approach to estimate locations and intensities of past earthquake epicenters. Finally, we explored which lake characteristics could explain the various sensitivities. Our results suggest that sedimentation rate should be larger than 0.5 mm yr À1 so that a given lake records earthquakes in moderately active seismotectonic regions. We also postulate that an increasing sedimentation rate may imply an increasing sensitivity to earthquake shaking. Hence, further paleoseismological studies should control carefully that no significant change in sedimentation rates occurs within a record, which could falsify the assessment of earthquake recurrence intervals.
International audienceFreshwater lakes are important sources of methane (CH4) emissions, by organic matter degradation under anaerobic conditions (methanogenesis). Previous studies suggest that lakes contribute up to 16 % of natural emissions. About 60 % of the CH4 produced is used as an energy source by methaneoxidizing bacteria (MOB--methanotrophs), which could support higher trophic levels, especially Chironomidae (Diptera). Because biogenic methane has a very low stable carbon isotope value, evidence of methane-derived organic-matter assimilation can be tracked by stable carbon isotope analysis in consumers such as chironomids. In some cases, however, chironomid d13C values are not low enough to unambiguously demonstrate methanotroph assimilation and an alternative line of evidence is required. Analysis of ancient DNA (aDNA) from the methanotroph community preserved in lake sediment provides reliable information about past methane oxidation in freshwater lakes. A combination of these two approaches was used to study a sediment core from the deepest zone of Lake Narlay (Jura, France), which covers the last 1,500 years of sediment accumulation. Results show a significant change ca.AD1600, with an increase in the proportion of MOB in the total bacteria community, and a decrease in chironomid headcapsule d13C. These trends suggest assimilation of MOB by chironomid larvae, and account for up to 36 %of the chironomid biomass. The data also provide information about the feeding behavior of chironomids, with evidence for preferential assimilation of methanotroph type I and the NC10 phylum. The combination of aDNA analysis and carbon stable isotopes strengthens the reliability of inferences about carbon sources incorporated into chironomid biomas
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.