LGD-4033 is one of a number of selective androgen receptor modulators (SARMs) that are being developed by the pharmaceutical industry to provide the therapeutic benefits of anabolic androgenic steroids, without the less desirable side effects.Though not available therapeutically, SARMs are available for purchase online as supplement products. The potential for performance enhancing effects associated with these products makes them a significant concern with regards to doping control in sports. The purpose of this study was to investigate the metabolism of LGD-4033 in the horse following oral administration, in order to identify the most appropriate analytical targets for doping control laboratories. LGD-4033 was orally administered to two Thoroughbred horses and urine, plasma and hair samples were collected and analysed for parent drug and metabolites. LC-HRMS was used for metabolite identification in urine and plasma. Eight metabolites were detected in urine, five of which were excreted only as phase II conjugates, with the longest detection time being observed for di-and tri-hydroxylated metabolites. The parent compound could only be detected in urine in the conjugated fraction. Seven metabolites were detected in plasma along with the parent compound where mono-hydroxylated metabolites provided the longest duration of detection. Preliminary investigations with hair samples using LC-MS/MS analysis indicated the presence of trace amounts of the parent compound and one of the mono-hydroxylated metabolites. In vitro incubation ofLGD-4033 with equine liver microsomes was also performed for comparison, yielding 11 phase I metabolites. All of the metabolites observed in vivo were also observed in vitro.
Gas chromatography/mass spectrometry and selective derivatisation techniques have been used to identify urinary metabolites of methyltestosterone following oral administration to the greyhound. Several metabolites were identified including reduced, mono-, di- and trihydroxylated steroids. The major metabolites observed were 17alpha-methyl-5beta-androstane-3alpha-17beta-diol, 17alpha-methyl-5beta-androstane-3alpha,16alpha,17beta-triol, and a further compound tentatively identified as 17alpha-methyl-5z-androstane-6z,17beta-triol. The most abundant of these was the 17alpha-methyl-5beta-androstane-3alpha,16alpha,17beta-triol. This metabolite was identified by comparison with a reference standard synthesised using a Grignard procedure and characterised using trimethylsilyl (TMS) and acetonide-TMS derivatisation techniques. There did not appear to be any evidence for 16beta-hydroxylation as a phase I metabolic transformation in the greyhound. However, significant quantities of 16alpha-hydroxy metabolites were detected. Selective enzymatic hydrolysis procedures indicated that the major metabolites identified were excreted as glucuronic acid conjugates. Metabolic transformations observed in the greyhound have been compared with those of other mammalian species and are discussed here.
AC‐262536 is one of a number of selective androgen receptor modulators that are being developed by the pharmaceutical industry for treatment of a range of clinical conditions including androgen replacement therapy. Though not available therapeutically, selective androgen receptor modulators are widely available to purchase online as (illegal) supplement products. The growth‐ and bone‐promoting effects, along with fewer associated negative side effects compared with anabolic–androgenic steroids, make these compounds a significant threat with regard to doping control in sport. The aim of this study was to investigate the metabolism of AC‐262536 in the horse following in vitro incubation and oral administration to two Thoroughbred horses, in order to identify the most appropriate analytical targets for doping control laboratories. Urine, plasma and hair samples were collected and analysed for parent drug and metabolites. Liquid chromatography–high‐resolution mass spectrometry was used for in vitro metabolite identification and in urine and plasma samples. Nine phase I metabolites were identified in vitro; four of these were subsequently detected in urine and three in plasma, alongside the parent compound in both matrices. In both urine and plasma samples, the longest detection window was observed for an epimer of the parent compound, which is suggested as the best target for detection of AC‐262536 administration. AC‐262536 and metabolites were found to be primarily glucuronide conjugates in both urine and plasma. Liquid chromatography–tandem mass spectrometry analysis of post‐administration hair samples indicated incorporation of parent AC‐262536 into the hair following oral administration. No metabolites were detected in the hair.
Boldenone (1-dehydrotestosterone) is an exogenous anabolic-androgenic steroid (AAS) but is also known to be endogenous in the entire male horse and potentially formed by microbes in voided urine, the gastrointestinal tract, or feed resulting in its detection in urine samples. In this study, equine fecal and urine samples were incubated in the presence of selected stable isotope labeled AAS precursors to investigate whether microbial activity could result in 1-dehydrogenation, in particular the formation of boldenone. Fecal matter was initially selected for investigation because of its high microbial activity, which could help to identify potential 1-dehydrogenated biomarkers that might also be present in low quantities in urine. Fecal incubations displayed Δ1-dehydrogenase activity, as evidenced by the use of isotope labeled precursors to show the formation of boldenone and boldione from testosterone and androstenedione, as well as the formation of Δ1-progesterone and boldione from progesterone. Unlabeled forms were also produced in unspiked fecal samples with Δ1-progesterone being identified for the first time. Subsequent incubation of urine samples with the labeled AAS precursors demonstrated that Δ1-dehydrogenase activity can also occur in this matrix. In all urine samples where labeled boldenone or boldione were detected, labeled Δ1-progesterone was also detected. Δ1progesterone was not detected any non-incubated urine samples or following an administration of boldenone undecylenate to one mare/filly. Δ1-progesterone appears to be a candidate for further investigation as a suitable biomarker to help evaluate whether boldenone present in a urine sample may have arisen due to microbial activity rather than by its exogenous administration.
Selective androgen receptor modulators (SARMs) are compounds with specific androgenic properties investigated for the treatment of conditions such as muscle wasting diseases. The reported androgenic properties have resulted in their use by athletes, and consequently they have been on the World Anti-Doping Agency prohibited list for more than a decade. SARMs have been investigated by pharmaceutical companies as potential drug candidates, but to date no SARM has demonstrated sufficient safety and efficacy to gain clinical approval by either the European Medicines Agency or the U.S. Food and Drug Administration. Despite their lack of safety approval, SARMs are often illegally marketed as dietary supplements, available for consumers to buy online. In this study, a range of supplement products marketed as SARMs were purchased and analyzed using high resolution accurate massmass spectrometry to evaluate the accuracy of product claims and content labeling. This study found discrepancies ranging from a supplement in which no active ingredients were found, to supplements containing undeclared prohibited analytes. Where SARMs were detected, discrepancies were observed between the concentrations measured and those detailed on the product packaging. The outcome of this experiment highlights the high risk of such supplement products to consumers. The inaccurate product claims give rise to uncertainty over both the dose taken and the identity of any of these unapproved drugs. Even for supplements for which the product labeling is correct, the lack of complete toxicity data, especially for combinations of SARMs taken as stacks, means that the safety of these supplements is unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.