We present an analysis of 1023 DBZ/DZ(A) and 319 DQ white dwarf stars taken from the Montreal White Dwarf Database. This represents a significant increase over the previous comprehensive studies on these types of objects. We use new trigonometric parallax measurements from the Gaia second data release, together with photometry from the Sloan Digital Sky Survey, Pan-STARRS, Gaia, or BVRI from the literature, which allow the determination of the mass for the majority of the objects in our sample. We use the photometric and spectroscopic techniques with our recently improved model atmospheres code, which include high-density effects, to accurately determine the effective temperature, surface gravity, and heavy-element abundances for each object. We study the abundance of hydrogen in DBZ/DZ white dwarfs and the properties of the accreted planetesimals. We explore the nature of the second sequence of DQ stars using proper motions from Gaia and highlight evidence of crystallization in massive DQ stars. We also present mass distributions for both spectral types. Finally, we discuss the implications of our findings in the context of the spectral evolution of white dwarfs and provide the atmospheric parameters for each star.
We present a critical review of the determination of fundamental parameters of white dwarfs discovered by the Gaia mission. We first reinterpret color-magnitude and color-color diagrams using photometric and spectroscopic information contained in the Montreal White Dwarf Database (MWDD), combined with synthetic magnitudes calculated from a self-consistent set of model atmospheres with various atmospheric compositions. The same models are then applied to measure the fundamental parameters of white dwarfs using the so-called photometric technique, which relies on the exquisite Gaia trigonometric parallax measurements, and photometric data from Pan-STARRS, SDSS, and Gaia. In particular, we discuss at length the systematic effects induced by these various photometric systems. We then study in great detail the mass distribution as a function of effective temperature for the white dwarfs spectroscopically identified in the MWDD, as well as for the white dwarf candidates discovered by Gaia. We pay particular attention to the assumed atmospheric chemical composition of cool, non-DA stars. We also briefly revisit the validity of the mass-radius relation for white dwarfs, and the recent discovery of the signature of crystallization in the Gaia color-magnitude diagram for DA white dwarfs. We finally present evidence that the core composition of most of these white dwarfs is, in bulk, a mixture of carbon and oxygen, an expected result from stellar evolution theory, but never empirically well established before.
We present follow-up spectroscopy of 711 white dwarfs within 100 pc, and we present a detailed model atmosphere analysis of the 100 pc white dwarf sample in the Sloan Digital Sky Survey footprint. Our spectroscopic follow-up is complete for 83% of the white dwarfs hotter than 6000 K, where the atmospheric composition can be constrained reliably. We identify 1508 DA white dwarfs with pure hydrogen atmospheres. The DA mass distribution has an extremely narrow peak at 0.59 M ⊙ and reveals a shoulder from relatively massive white dwarfs with M = 0.7–0.9 M ⊙. Comparing this distribution with binary population synthesis models, we find that the contribution from single stars that form through mergers cannot explain the overabundance of massive white dwarfs. In addition, the mass distribution of cool DAs shows a near absence of M > 1 M ⊙ white dwarfs. The pile-up of 0.7–0.9 M ⊙ and the disappearance of M > 1 M ⊙ white dwarfs is consistent with the effects of core crystallization. Even though the evolutionary models predict the location of the pile-up correctly, the delay from the latent heat of crystallization by itself is insufficient to create a significant pile-up, and additional cooling delays from related effects like phase separation are necessary. We also discuss the population of infrared-faint (ultracool) white dwarfs and demonstrate for the first time the existence of a well-defined sequence in color and magnitude. Curiously, this sequence is connected to a region in the color–magnitude diagrams where the number of white dwarfs with a helium-dominated atmosphere is low. This suggests that the infrared-faint white dwarfs likely have mixed H/He atmospheres.
Astronomers have discovered thousands of planets outside the solar system 1 , most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star 2 , but more distant planets can survive this phase and remain in orbit around the white dwarf 3,4 . Some white dwarfs show evidence for rocky material floating in their atmospheres 5 , in warm debris disks [6][7][8][9] , or orbiting very closely [10][11][12] , which has been interpreted as the debris of rocky planets that were scattered inward and tidally disrupted 13 . Recently, the discovery of a gaseous debris disk with a composition similar to ice giant planets 14 demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether the planets can survive the journey. So far, the detection of intact planets in close orbits around white dwarfs has remained elusive. Here, we report the discovery of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95% confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red-giant phase and shrinks due to friction. In this case, though, the low mass and relatively long orbital period of the planet candidate make common-envelope evolution less likely. Instead, the WD 1856+534 system seems to demonstrate that giant planets can be scattered into tight orbits without being tidally disrupted, and motivates searches for smaller transiting planets around white dwarfs. WD 1856+534 (hereafter, WD 1856 for brevity) is located 25 parsecs away in a visual triple star system. It has an effective temperature of 4710 ± 60 Kelvin and became a white dwarf 5.9 ± 0.5 billion years ago, based on theoretical models for how white dwarfs cool over time. The total system age, including the star's main sequence lifetime, must be older. Table 1 gives the other key parameters of the star. WD 1856 is one of thousands of white dwarfs that was targeted for observations with NASA's Transiting Exoplanet Survey Satellite (TESS ), in order to search for any periodic dimming events caused by planetary transits. A statistically significant transit-like event was detected by the TESS Science Processing Operations Center (SPOC) pipeline based
The photospheres of the coolest helium-atmosphere white dwarfs are characterized by fluid-like densities. Under those conditions, standard approximations used in model atmosphere codes are no longer appropriate. Unfortunately, the majority of cool He-rich white dwarfs show no spectral features, giving us no opportunities to put more elaborate models to the test. In the few cases where spectral features are observed (such as in cool DQ or DZ stars), current models completely fail to reproduce the spectroscopic data, signaling shortcomings in our theoretical framework. In order to fully trust parameters derived solely from the energy distribution, it is thus important to at least succeed in reproducing the spectra of the few coolest stars exhibiting spectral features, especially since such stars possess even less extreme physical conditions due to the presence of heavy elements. In this paper, we revise every building block of our model atmosphere code in order to eliminate low-density approximations. Our updated white dwarf atmosphere code incorporates state-of-the-art constitutive physics suitable for the conditions found in cool helium-rich stars (DC and DZ white dwarfs). This includes new high-density metal line profiles, nonideal continuum opacities, an accurate equation of state and a detailed description of the ionization equilibrium. In particular, we present new ab initio calculations to assess the ionization equilibrium of heavy elements (C, Ca, Fe, Mg and Na) in a dense helium medium and show how our improved models allow us to achieve better spectral fits for two cool DZ stars, Ross 640 and LP 658-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.