Figure 1: Non-photorealistic illustration of motion capture sequences: (a) spin kick, (b) dancing pirouette, (c) cart wheel, (d) bending-over. Each motion is emphasized using motion arrows, noise waves, and/or stroboscopic motion. AbstractThere are many applications for which it is necessary to illustrate motion in a static image using visual cues which do not represent a physical entity in the scene, yet are widely understood to convey motion. For example, consider the task of illustrating the desired movements for exercising, dancing, or a given sport technique. Traditional artists have developed techniques to specify desired movements precisely (technical illustrators) and suggest motion (cartoonists) in an image.In this paper, we present an interactive system to synthesize a 2D image of an animated character by generating artist-inspired motion cues derived from 3D skeletal motion capture data. The primary cues include directed arrows, noise waves, and stroboscopic motion. First, the user decomposes the animation into short sequences containing individual motions which can be represented by visual cues. The system then allows the user to determine a suitable viewpoint for illustrating the movement, to select the proper level in the joint hierarchy, as well as to fine-tune various controls for the depiction of the cues themselves. While the system does provide adapted default values for each control, extracted from the motion capture data, it allows fine-tuning for greater expressiveness. Moreover, these cues are drawn in real time, and maintain a coherent display with changing viewpoints.We demonstrate the benefit of our interactive system on various motion capture sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.