Although a wide range of approaches have been developed to automatically assess the volume of brain regions from MRI, the reproducibility of these algorithms across different scanners and pulse sequences, their accuracy in different clinical populations and sensitivity to real changes in brain volume has not always been comprehensively examined. Firstly we present a comprehensive testing protocol which comprises 312 freely available MR images to assess the accuracy, reproducibility and sensitivity of automated brain segmentation techniques. Accuracy is assessed in infants, young adults and patients with Alzheimer’s disease in comparison to gold standard measures by expert observers using a manual technique based on Cavalieri’s principle. The protocol determines the reliability of segmentation between scanning sessions, different MRI pulse sequences and 1.5T and 3T field strengths and examines their sensitivity to small changes in volume using a large longitudinal dataset. Secondly we apply this testing protocol to a novel algorithm for segmenting the lateral ventricles and compare its performance to the widely used FSL FIRST and FreeSurfer methods. The testing protocol produced quantitative measures of accuracy, reliability and sensitivity of lateral ventricle volume estimates for each segmentation method. The novel algorithm showed high accuracy in all populations (intraclass correlation coefficient, ICC>0.95), good reproducibility between MRI pulse sequences (ICC>0.99) and was sensitive to age related changes in longitudinal data. FreeSurfer demonstrated high accuracy (ICC>0.95), good reproducibility (ICC>0.99) and sensitivity whilst FSL FIRST showed good accuracy in young adults and infants (ICC>0.90) and good reproducibility (ICC=0.98), but was unable to segment ventricular volume in patients with Alzheimer’s disease or healthy subjects with large ventricles. Using the same computer system, the novel algorithm and FSL FIRST processed a single MRI image in less than 10 minutes while FreeSurfer took approximately 7 hours. The testing protocol presented enables the accuracy, reproducibility and sensitivity of different algorithms to be compared. We also demonstrate that the novel segmentation algorithm and FreeSurfer are both effective in determining lateral ventricular volume and are well suited for multicentre and longitudinal MRI studies.
BackgroundThe homogeneous genotype and stereotyped phenotype of a unique familial form of amyotrophic lateral sclerosis (ALS) (patients homozygous for aspartate-to-alanine mutations in codon 90 (homD90A) superoxide dismutase 1) provides an ideal model for studying genotype/phenotype interactions and pathological features compared with heterogeneous apparently sporadic ALS. The authors aimed to use diffusion tensor tractography to quantify and compare changes in the intracerebral corticospinal tracts of patients with both forms of ALS, building on previous work using whole-brain voxelwise group analysis.Method21 sporadic ALS patients, seven homD90A patients and 20 healthy controls underwent 1.5 T diffusion tensor MRI. Patients were assessed using ‘upper motor neuron burden,’ El Escorial and ALSFR-R scales. The intracranial corticospinal tract was assessed using diffusion tensor tractography measures of fractional anisotropy (FA), mean diffusivity, and radial and axial diffusivity obtained from its entire length.ResultsCorticospinal tract FA was reduced in sporadic ALS patients compared with both homD90A ALS patients and controls. The diffusion measures in sporadic ALS patients were consistent with anterograde (Wallerian) degeneration of the corticospinal tracts. In sporadic ALS, corticospinal tract FA was related to clinical measures. Despite a similar degree of clinical upper motor neuron dysfunction and disability in homD90A ALS patients compared with sporadic ALS, there were no abnormalities in corticospinal tract diffusion measures compared with controls.ConclusionsDiffusion tensor tractography has shown axonal degeneration within the intracerebral portion of the corticospinal tract in sporadic ALS patients, but not those with a homogeneous form of familial ALS. This suggests significant genotypic influences on the phenotype of ALS and may provide clues to slower progression of disease in homD90A patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.