Background and Purpose:
Mechanical thrombectomy (MTB) is a reference treatment for acute ischemic stroke, with several endovascular strategies currently available. However, no quantitative methods are available for the selection of the best endovascular strategy or to predict the difficulty of clot removal. We aimed to investigate the predictive value of an endovascular strategy based on radiomic features extracted from the clot on preinterventional, noncontrast computed tomography to identify patients with first-attempt recanalization with thromboaspiration and to predict the overall number of passages needed with an MTB device for successful recanalization.
Methods:
We performed a study including 2 cohorts of patients admitted to our hospital: a retrospective training cohort (n=109) and a prospective validation cohort (n=47). Thrombi were segmented on noncontrast computed tomography, followed by the automatic computation of 1485 thrombus-related radiomic features. After selection of the relevant features, 2 machine learning models were developed on the training cohort to predict (1) first-attempt recanalization with thromboaspiration and (2) the overall number of passages with MTB devices for successful recanalization. The performance of the models was evaluated on the prospective validation cohort.
Results:
A small subset of radiomic features (n=9) was predictive of first-attempt recanalization with thromboaspiration (receiver operating characteristic curve–area under the curve, 0.88). The same subset also predicted the overall number of passages required for successful recanalization (explained variance, 0.70; mean squared error, 0.76; Pearson correlation coefficient, 0.73;
P
<0.05).
Conclusions:
Clot-based radiomics have the ability to predict an MTB strategy for successful recanalization in acute ischemic stroke, thus allowing a potentially better selection of the MTB strategy, as well as patients who are most likely to benefit from the intervention.
Distinguishing lipoma from liposarcoma is challenging on conventional MRI examination. In case of uncertain diagnosis following MRI, further invasive procedure (percutaneous biopsy or surgery) is often required to allow for diagnosis based on histopathological examination. Radiomics and machine learning allow for several types of pathologies encountered on radiological images to be automatically and reliably distinguished. The aim of the study was to assess the contribution of radiomics and machine learning in the differentiation between soft-tissue lipoma and liposarcoma on preoperative MRI and to assess the diagnostic accuracy of a machine-learning model compared to musculoskeletal radiologists. 86 radiomics features were retrospectively extracted from volume-of-interest on T1-weighted spin-echo 1.5 and 3.0 Tesla MRI of 38 soft-tissue tumors (24 lipomas and 14 liposarcomas, based on histopathological diagnosis). These radiomics features were then used to train a machine-learning classifier to distinguish lipoma and liposarcoma. The generalization performance of the machine-learning model was assessed using Monte-Carlo cross-validation and receiver operating characteristic curve analysis (ROC-AUC). Finally, the performance of the machine-learning model was compared to the accuracy of three specialized musculoskeletal radiologists using the McNemar test. Machine-learning classifier accurately distinguished lipoma and liposarcoma, with a ROC-AUC of 0.926. Notably, it performed better than the three specialized musculoskeletal radiologists reviewing the same patients, who achieved ROC-AUC of 0.685, 0.805, and 0.785. Despite being developed on few cases, the trained machine-learning classifier accurately distinguishes lipoma and liposarcoma on preoperative MRI, with better performance than specialized musculoskeletal radiologists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.