We consider two-dimensional lattice models that support Ising anyonic excitations and are coupled to a thermal bath. We propose a phenomenological model for the resulting short-time dynamics that includes pair creation, hopping, braiding, and fusion of anyons. By explicitly constructing topological quantum error-correcting codes for this class of system, we use our thermalization model to estimate the lifetime of the quantum information stored in the encoded spaces. To decode and correct errors in these codes, we adapt several existing topological decoders to the non-Abelian setting. We perform large-scale numerical simulations of these two-dimensional Ising anyon systems and find that the thresholds of these models range from 13% to 25%. To our knowledge, these are the first numerical threshold estimates for quantum codes without explicit additive structure.
Classically simulating the dynamics of anyonic excitations in two-dimensional quantum systems is likely intractable in general because such dynamics are sufficient to implement universal quantum computation. However, processes of interest for the study of quantum error correction in anyon systems are typically drawn from a restricted class that displays significant structure over a wide range of system parameters. We exploit this structure to classically simulate, and thereby demonstrate the success of, an error-correction protocol for a quantum memory based on the universal Fibonacci anyon model. We numerically simulate a phenomenological model of the system and noise processes on lattice sizes of up to 128 × 128 sites, and find a lower bound on the errorcorrection threshold of approximately 0.125 errors per edge, which is comparable to those previously known for abelian and (non-universal) nonabelian anyon models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.