Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.
Alternating-time Temporal Logic is a logic to reason about strategies that agents can adopt to achieve a specified collective goal. A number of extensions for this logic exist; some of them combine strategies and partial observability, some others include fairness constraints, but to the best of our knowledge no work provides a unified framework for strategies, partial observability and fairness constraints. Integration of these three concepts is important when reasoning about the capabilities of agents without full knowledge of a system, for instance when the agents can assume that the environment behaves in a fair way. We present ATLK irF , a logic combining strategies under partial observability in a system with fairness constraints on states. We introduce a model-checking algorithm for ATLK irF by extending the algorithm for a full-observability variant of the logic and we investigate its complexity. We validate our proposal with an experimental evaluation.
A number of extensions exist for Alternating-time Temporal Logic; some of these mix strategies and partial observability but, to the best of our knowledge, no work provides a unified framework for strategies, partial observability and fairness constraints. In this paper we propose ATLK^F_po, a logic mixing strategies under partial observability and epistemic properties of agents in a system with fairness constraints on states, and we provide a model checking algorithm for it
In the railway domain, an interlocking is a computerised system that controls the railway signalling objects in order to allow a safe operation of the train traffic. Each interlocking makes use of particular data, called application data, that reflects the track layout of the station under control. The verification and validation of the application data are performed manually and is thus error-prone and costly. In this paper, we explain how we built an executable model in NuSMV of a railway interlocking based on the application data. We also detail the tool that we have developed in order to translate the application data into our model automatically. Finally we show how we could verify a realistic set of safety properties on a real-size station model by customizing the existing model-checking algorithm with PyNuSMV a Python library based on NuSMV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.