ObjectivesThe paucity of safety information on intrauterine devices (IUD) for magnetic resonance imaging (MRI) examinations is clinically relevant. The aim of this study is to evaluate the MRI safety of clinically used IUDs composed of copper/gold and stainless steel at 1.5T and 3.0T.Materials and methodsWe assessed and compared the displacement force, torque effects, presence of imaging artifacts and heating of IUDs composed of copper/gold (western IUDs) and stainless steel (China) on 1.5 and 3.0T MRI systems.ResultsGold/Copper IUDs can show small deflection angles of 7° ± 7° in the worst-case field gradient of 40T/m (equivalent to magnetic force of 0.5 mN), while the stainless steel IUD experienced significant magnetic force and deflection (Force > 7.5 N; deflection angle 90° ± 1°). Manual rotation and suspension method show no torque effects on gold/copper IUDs but high torque effects were observed by manual rotation on the stainless steel IUD. Heating measurements showed a temperature increase (rescaled to a wbSAR of 4 W/kg) of 1.4°C at 1.5T / 3.4°C at 3.0 T (stainless steel IUD), 3.2°C at 1.5 T / 3.8°C at 3 T (copper/gold IUD), 3.3°C at 1.5 T / 4.8°C at 3 T (copper 1), 3.8°C at 1.5 T / 4.8°C at 3 T (copper 2). The visible imaging artifacts of the copper and gold IUDs at 3 T MRI reach a diameter of 4 mm ± 1 mm, while the stainless steel IUD resulted in artifacts measuring 200mm ± 10 mm when using gradient echo pulse sequences.ConclusionsStandard IUDs (copper/gold) can be considered as conditional for MR safety at 1.5 T and 3.0 T, demonstrating at wbSAR up to 4W/kg and a magnetic field gradient of up to 40T/m with minimal imaging artifacts. The stainless steel IUD, however, induces unacceptable artifacts and is potentially harmful to patients during MRI due to high magnetic dislocation forces and torque (MR unsafe).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.