Formic acid (HCOOH) has great potential as an in situ source of hydrogen for fuel cells, because it offers high energy density, is non-toxic and can be safely handled in aqueous solution. So far, there has been a lack of solid catalysts that are sufficiently active and/or selective for hydrogen production from formic acid at room temperature. Here, we report that Ag nanoparticles coated with a thin layer of Pd atoms can significantly enhance the production of H₂ from formic acid at ambient temperature. Atom probe tomography confirmed that the nanoparticles have a core-shell configuration, with the shell containing between 1 and 10 layers of Pd atoms. The Pd shell contains terrace sites and is electronically promoted by the Ag core, leading to significantly enhanced catalytic properties. Our nanocatalysts could be used in the development of micro polymer electrolyte membrane fuel cells for portable devices and could also be applied in the promotion of other catalytic reactions under mild conditions.
Materials with high dielectric permittivity are important in electronic components such as capacitors, gate dielectrics, memories, and power-storage devices. [1][2][3][4] Conventional highpermittivity materials such as barium titanate (BT) can be processed into thin films by using chemical solution deposition yielding a relative permittivity (e r ) of about 2500 and relatively low dielectric loss but require high-temperature sintering, which is not compatible with many substrate materials.[ [7][8][9][10] Polymer/ceramic nanocomposites in which high-e r metal oxide nanoparticles such as BT [11,12] and lead magnesium niobate-lead titanate (PMN-PT) [1,13,14] are incorporated into a polymer host are of significant current interest. The combination of high-e r nanoparticles with high-dielectric-strength polymer hosts offers the potential to obtain processable highperformance dielectric materials. Simple solution processing of BT particles in a polymer host generally results in poor film quality and inhomogeneities, which are mainly caused by agglomeration of the nanoparticles. Addition of surfactants, such as phosphate esters and oligomers thereof, can improve the dispersion of BT nanoparticles in host polymers and consequently the overall nanocomposite film quality. [1,13,15] However, in such systems, residual free surfactant can lead to high leakage current and dielectric loss. [16] Thus, approaches to bind surface modifiers to BT nanoparticles via robust chemical bonds are highly desirable. Ramesh et al. have reported on the use of trialkoxysilane surface modifiers for the dispersion of BT nanoparticles in epoxy polymer hosts resulting in nanocomposites with reasonably high e r , up to 45. [12] With the objective of identifying ligands that can form stable bonds to a BT surface through coordination or condensation, we have investigated a series of different ligand functionalities. In this Communication, we report that phosphonic acid ligands effect robust surface modification of BT and related nanoparticles and that the use of particles modified with suitable phosphonic acid ligands leads to well-dispersed BT nanocomposite films with high e r and high dielectric strength.We have investigated the binding of a variety of ligands to the surface of BT nanoparticles, as the stability of the binding on the surface is vital to effective surface modification.[17] We examined the following set of ligands, each bearing an aliphatic octyl chain with a different terminal binding group: C 8 H 17 -X, where X = PO(OH) 2 (OPA), SO 2 ONa (OSA), Si(OCH 3 ) 3 (OTMOS), and CO 2 H (OCA). Trialkoxysilanes are widely used surface modifiers for silicate, indium tin oxide, and other metal oxide surfaces. Phosphonic acids have been reported to modify TiO 2 , ZrO 2 , and indium tin oxide surfaces [18][19][20] and are thought to couple to the surface of metal oxides either by heterocondensation with surface hydroxyl groups or coordination to metal ions on the surface.[18] Carboxylic acid and sulfonic acid groups may also bind to the surface ...
Indium−tin oxide (ITO) electrodes have been modified with both fluorinated alkyl and aryl phosphonic acids [n-hexylphosphonic acid (HPA) and n-octadecylphosphonic acid (ODPA); 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl phosphonic acid (FHOPA), pentafluorobenzyl phosphonic acid (PFBPA), and tetrafluorobenzyl-1,4-diphosphonic acid (TFBdiPA)]. These are modifiers designed to control both wetting properties toward nonpolar molecular solids and to provide a wide range of tunability in effective surface work function. The molecular nature of surface attachment and changes in electronic and wetting properties were characterized by X-ray photoelectron spectroscopy (XPS), UV-photoelectron spectroscopy (UPS), photoelastic modulation infrared reflection−absorption spectroscopy (PM-IRRAS), and contact angle measurements using both water and hexadecane. Interface dipoles from the PA modifiers contribute to shifts in the low kinetic energy regions of UPS spectra (local vacuum level shifts, which translate into changes in effective surface work function). We show that for ITO surfaces modified with FHOPA, and to a lesser extent with PFBPA, the high work function obtained by oxygen plasma cleaning can be maintained after modification, while decreasing the polar component of surface energy. This approach to oxide surface modification is a strategy that may be beneficial for the modification of transparent conducting oxide surfaces in both organic light emitting diodes and in organic solar cells, where oxide/organic compatibility can affect device performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.