A new heteroditopic calix[4]diquinone triazole containing receptor capable of recognising both cations and anions through Lewis base and C-H hydrogen-bonding modes, respectively, of the triazole motif has been prepared. This ion-pair receptor cooperatively binds halide/monovalent-cation combinations in an aqueous mixture, with selectivity trends being established by (1)H NMR and UV/Vis spectroscopy. Cation binding by the calix[4]diquinone oxygen and triazole nitrogen donors enhances the strength of the halide complexation at the isophthalamide recognition site of the receptor. Conversely, anions bound in the receptor's isophthalamide cavity enhance cation recognition. (1)H NMR investigations in solution suggest that the receptor's triazole motifs are capable of coordinating simultaneously to both cation and anion guest species. Solid-state X-ray crystallographic structural analysis of a variety of receptor ion-pair adducts further demonstrates the dual cation-anion binding role of the triazole group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.