This paper presents a methodology for estimating the optimal amount of automatic Frequency Restoration Reserve provided by an aggregation of renewable power plants. The increasing penetration of distributed weather-dependent renewable generation presents a challenge to grid operators. Wind and photovoltaic power plants are technically able to provide ancillary services, but their stochastic behavior currently hinders their integration into reserve mechanisms. In the methodology developed a Quantile Regression Forest model is used to forecast the aggregated production and a copula-based approach integrates the dependence between prices and renewable production. We then propose and compare three strategies to derive an optimal quantile of the combined production forecasts that can be used as basis to provide a reliable ancillary service to the System Operator. The methodology is evaluated using historical prices for energy and automatic Frequency Restoration Reserve along with production measurements from several renewable power plants.
This paper proposes a methodology for an efficient generation of correlated scenarios of Wind, Photovoltaics (PV) and small Hydro production considering the power system application at hand. The merits of scenarios obtained from a direct probabilistic forecast of the aggregated production are compared with those of scenarios arising from separate production forecasts for each energy source, the correlations of which are modeled in a later stage with a multivariate copula. It is found that scenarios generated from separate forecasts reproduce globally better the variability of a multi-source aggregated production. Aggregating renewable power plants can potentially mitigate their uncertainty and improve their reliability when they offer regulation services. In this context, the first application of scenarios consists in devising an optimal day-ahead reserve bid made by a Wind-PV-Hydro Virtual Power Plant (VPP). Scenarios are fed into a two-stage stochastic optimization model, with chance-constraints to minimize the probability of failing to deploy reserve in real-time. Results of a case study show that scenarios generated by separately forecasting the production of each energy source leads to a higher Conditional Value at Risk than scenarios from direct aggregated forecasting. The alternative forecasting methods can also significantly affect the scheduling of future power systems with high penetration of weather-dependent renewable plants. The generated scenarios have a second application here as the inputs of a two-stage stochastic unit commitment model. The case study demonstrates that the direct forecast of aggregated production can effectively reduce the system operational cost, mainly through better covering the extreme cases. The comprehensive application-based assessment of scenario generation methodologies in this paper informs the decision-makers on the optimal way to generate short-term scenarios of aggregated RES production according to their risk aversion and to the contribution of each source in the aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.