Non-isothermal laser-based powder bed fusion (LPBF) of polymers suggests the potential for significantly extending the range of materials applicable for powder-based additive manufacturing of polymers, relying on the absence of a material-specific processing window. To allow for the support-free manufacturing of polymers at a build chamber temperature of 25 °C, applied processing strategies comprise the combination of fractal exposure strategies and locally quasi-simultaneous exposure of distinct segments of a particular cross section for minimizing crystallization-induced part deflection. Based on the parameter-dependent control of emerging cooling rates, formed part morphologies and resulting mechanical properties can be modified. Thermographic in situ measurements allow for correlating thermal processing conditions and crystallization kinetics with component-specific mechanical, morphological, and microstructural properties, assessed ex situ. Part morphologies formed at crystallization temperatures below 70 °C, induced by reduced laser exposure times, are characterized by a nano-spherulitic structure, exhibiting an enhanced elongation at break. An ambient temperature of 25 °C is associated with the predominant formation of a combined (α + γ)-phase, induced by the rapid cooling and subsequent laser-induced tempering of distinct layers, yielding a periodic microstructural evolution. The presented results demonstrate a novel approach for obtaining nano-spherulitic morphologies, enabling the exposure-based targeted adaption of morphological properties. Furthermore, the thermographic inline assessment of crystallization kinetics allows for the enhanced understanding of process-morphology interdependencies in laser-based manufacturing processes of semi-crystalline polymers.
To develop new areas of application for laser-based powder bed fusion of polymers (PBF-LB/P), a deeper process understanding of the resulting mechanical properties, particularly for thin-walled and complex structures, is needed. This work addresses the influence of part thickness and orientation in detail. For a general understanding, two PBF systems were used. For comparison, the normalized energy density was determined for specimens of various thicknesses and orientations. It could be seen that the normalized energy density exhibited opposing trends for the two systems for progressively thinner samples. During the process, the exposure temperature development was observed using an infrared camera for a greater understanding of the developing part properties. To further investigate the fracture behavior, an infrared camera was used during tensile testing, which revealed various patterns depending on the PBF-System used. The results showed a machine-dependent difference in the exposure temperatures and elongation at break for z-oriented parts. While the surface roughness was independent of the thickness, the density, porosity, and the mechanical properties were affected significantly by the part thickness. The parts showed a brittle breaking behavior with a crack initiation from the short side of the tensile bar. These results improved process expertise, and in particular the mechanical performance of thin-walled structures caused by temperature variations in PBF-LB/P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.