The Canarian Archipelago is a group of volcanic islands on a slow-moving oceanic plate, close to a continental margin. The origins of the archipelago are controversial: a hotspot or mantle plume, a zone of lithospheric deformation, a region of compressional block-faulting or a rupture propagating westwards from the active Atlas Mountains fold belt have been proposed by different authors. However, comparison of the Canarian Archipelago with the prototypical hotspot-related island group, the Hawaiian Archipelago, reveals that the differences between the two are not as great as had previously been supposed on the basis of older data. Quaternary igneous activity in the Canaries is concentrated at the western end of the archipelago, close to the present-day location of the inferred hotspot. This is the same relationship as seen in the Hawaiian and Cape Verde islands. The latter archipelago, associated with a well-defined but slow-moving mantle plume, shows anomalies in a plot of island age against distance which are comparable to those seen in the Canary Islands: these anomalies cannot therefore be used to argue against a hotspot origin for the Canaries. Individual islands in both archipelagoes are characterized by initial rapid growth (the ‘shield-building’ stages of activity), followed by a period of quiescence and deep erosion (erosion gap) which in turn is followed by a ‘post-erosional’ stage of activity. The absence of post-shield stage subsidence in the Canaries is in marked contrast with the major subsidence experienced by the Hawaiian Islands, but is comparable with the lack of subsidence evident in other island groups at slow-moving hotspots, such as the Cape Verdes. Comparison of the structure and structural evolution of the Canary Islands with other oceanic islands such as Hawaii and Réunion reveals many similarities. These include the development of triple (‘Mercedes Star’) rift zones and the occurrence of giant lateral collapses on the flanks of these rift zones. The apparent absence of these features in the post-erosional islands may in part be a result of their greater age and deeper erosion, which has removed much of the evidence for their early volcanic architecture. We conclude that the many similarities between the Canary Islands and island groups whose hotspot origins are undisputed show that the Canaries have been produced in the same way.
It has been suggested that the release of clathrates rather than expansion of wetlands is the primary cause of the rapid increases observed in the ice-core atmospheric methane record during the Pleistocene. Because submarine sediment failures can involve as much as 5000 Gt of sediment and have the capacity to release vast quantities of methane hydrates, one of the major tests of the clathrate gun hypothesis is determining whether the periods of enhanced continental-slope failure and atmospheric methane correlate. To test the clathrate gun hypothesis, we have collated published dates for submarine sediment failures in the North Atlantic sector and correlated them with climatic change for the past 45 k.y. More than 70% by volume of continental-slope failures during the past 45 k.y. was displaced in two periods, between 15 and 13 ka and between 11 and 8 ka. Both these intervals correlate with rising sea level and peaks in the methane record during the Bølling-Å llerød and Preboreal periods. These data support the clathrate gun hypothesis for glacial-interglacial transitions. The data do not, however, support the clathrate gun hypothesis for glacial millennial-scale climate cycles, because the occurrence of sediment failures correlates with Heinrich events, i.e., lows in sea level and atmospheric methane. A secondary use of this data set is the insight into the possible cause of continental-slope failures. Glacial-period slope failures occur mainly in the low latitudes and are associated with lowering sea level. This finding suggests that reduced hydrostatic pressure and the associated destabilization of gas hydrates may be the primary cause. The Bølling-Å llerød sediment failures were predominantly low latitude, suggesting an early tropical response to deglaciation, e.g., enhanced precipitation and sediment load to the continental shelf or warming of intermediate waters. In contrast, sediment failures during the Preboreal period and the majority of the Holocene occurred in the high latitudes, suggesting either isostatic rebound-related earthquake activity or reduced hydrostatic pressure caused by isostatic rebound, causing destabilization of gas hydrates.
Gas hydrates are ice-like deposits containing a mixture of water and gas; the most common gas is methane. Gas hydrates are stable under high pressures and relatively low temperatures and are found underneath the oceans and in permafrost regions. Estimates range from 500 to 10 000 giga tonnes of carbon (best current estimate 1600-2000 GtC) stored in ocean sediments and 400 GtC in Arctic permafrost. Gas hydrates may pose a serious geohazard in the near future owing to the adverse effects of global warming on the stability of gas hydrate deposits both in ocean sediments and in permafrost. It is still unknown whether future ocean warming could lead to significant methane release, as thermal penetration of marine sediments to the clathrate-gas interface could be slow enough to allow a new equilibrium to occur without any gas escaping. Even if methane gas does escape, it is still unclear how much of this could be oxidized in the overlying ocean. Models of the global inventory of hydrates and trapped methane bubbles suggest that a global 3• C warming could release between 35 and 940 GtC, which could add up to an additional 0.5• C to global warming. The destabilization of gas hydrate reserves in permafrost areas is more certain as climate models predict that high-latitude regions will be disproportionately affected by global warming with temperature increases of over 12• C predicted for much of North America and Northern Asia. Our current estimates of gas hydrate storage in the Arctic region are, however, extremely poor and non-existent for Antarctica. The shrinking of both the Greenland and Antarctic ice sheets in response to regional warming may also lead to destabilization of gas hydrates. As ice sheets shrink, the weight removed allows the coastal region and adjacent continental slope to rise through isostacy. This removal of hydrostatic pressure could destabilize gas hydrates, leading to massive slope failure, and may increase the risk of tsunamis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.