For many everyday sensorimotor tasks, trained dancers have been found to exhibit distinct and sometimes superior (more stable or robust) patterns of behavior compared to non-dancers. Past research has demonstrated that experts in fields requiring specialized physical training and behavioral control exhibit superior interpersonal coordination capabilities for expertise-related tasks. To date, however, no published studies have compared dancers’ abilities to coordinate their movements with the movements of another individual—i.e., during a so-called visual-motor interpersonal coordination task. The current study was designed to investigate whether trained dancers would be better able to coordinate with a partner performing short sequences of dance-like movements than non-dancers. Movement time series were recorded for individual dancers and non-dancers asked to synchronize with a confederate during three different movement sequences characterized by distinct dance styles (i.e., dance team routine, contemporary ballet, mixed style) without hearing any auditory signals or music. A diverse range of linear and non-linear analyses (i.e., cross-correlation, cross-recurrence quantification analysis, and cross-wavelet analysis) provided converging measures of coordination across multiple time scales. While overall levels of interpersonal coordination were influenced by differences in movement sequence for both groups, dancers consistently displayed higher levels of coordination with the confederate at both short and long time scales. These findings demonstrate that the visual-motor coordination capabilities of trained dancers allow them to better synchronize with other individuals performing dance-like movements than non-dancers. Further investigation of similar tasks may help to increase the understanding of visual-motor entrainment in general, as well as provide insight into the effects of focused training on visual-motor and interpersonal coordination.
The concept of affordance is rapidly gaining popularity in neuroscientific accounts of perception and action. This concept was introduced by James Gibson to refer to the action possibilities of the environment. By contrast, standard cognitive neuroscience typically uses the concept to refer to (action-oriented) representations in the brain. This paper will show that the view of affordances as representations firmly places the concept in the subject-object framework that dominates both psychology and neuroscience. Notably, Gibson introduced the affordance concept to overcome this very framework. We describe an account of the role of the brain in perception and action that is consistent with Gibson. Making use of neuroscientific findings of neural reuse, degeneracy and functional connectivity, we conceptualize neural regions in the brain as dispositional parts of perceptual and action systems that temporarily assemble to enable animals to directly perceive and - in the paradigmatic case - utilize the affordances of the environment.
Earlier studies have revealed that the calibration of an action sometimes transfers in a functionally specific way—the calibration of one action transfers to other actions that serve the same goal, even when they are performed with different anatomical structures. In the present study, we tested whether attunement (the process by which perceivers learn to detect a more useful, specifying, informational pattern) follows such a functional organization. Participants were trained to perceive the length of rods by dynamic touch with one of their effectors. It was found that training the right hand resulted in an attunement to a specifying variable with both hands, but not with the feet. Training the other limbs did not result in attunement. However, substantial individual differences were found. The implications of the results are explored for theories on the organization of perceptual learning and discussions on individual differences in perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.