Cyanide is one of the main reagents used in gold mining that can be recovered to reduce operational costs. Gas membrane technology is an attractive method for intensifying both the stripping and absorption processes of valuable compounds, such as cyanide. However, scaling-up this technology from laboratory to industry is an unsolved challenge because it requires the improvement of the experimental methodologies that replicate lab-scale results at a larger scale. With this purpose in mind, this study compares the performance of three different hollow fiber membrane contactor modules (1.7 × 5.5 Mini Module, 1.7 × 10 Mini Module, and 2.5 × 8 Extra Flow). These are used for recovering cyanide from aqueous solutions at laboratory scale, using identical operational conditions. For each experimental set-up, mass-transfer correlations at the ranges of feed flows assayed were determined. The modules with the smallest and largest area of mass transfer reached similar cyanide recoveries (>95% at 60 min), which demonstrate the impact of module configuration on their operating performance. The results obtained here are limited for scaling-up the membrane module performance only because operating modules with the largest area results in a low Re number. This fact limits the extrapolation of results from the mass-transfer correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.