SummaryReplicative senescence occurs when normal somatic cells stop dividing. Senescent cells remain viable, but show alterations in phenotype, e.g. altered expression of matrix metalloproteinases ( MMPs ); these enzymes are known to be involved in cartilage destruction. It is assumed that cells deplete their replicative potential during aging, and age is a major risk factor for osteoarthritis (OA). Therefore, we hypothesized that chondrocytes in aging or diseased cartilage become senescent with associated phenotypic changes contributing to development or progression of OA.Articular cartilage was obtained from OA patients undergoing arthroplasty, with 'normal' cartilage from trauma surgery for hip fracture. Senescent cells were identified using the senescence-associated β β β β -galactosidase (SA-β β β β -gal) marker. Telomere length was assessed using Southern blot. MMP expression was measured at the mRNA level using Taqman® RT-PCR.No SA-β β β β -gal staining was observed in control cartilage regardless of patient age. In contrast, SA-β β β β -gal staining was observed in damaged OA cartilage adjacent to the lesion. Cultured chondrocytes isolated from sites near a lesion contained a greater percentage of SA-β β β β -gal positive cells than cultures isolated from distal sites or normal cartilage. Mean telomere length was shorter in cells near the lesion compared to distal sites in the same joint; thus the former population has undergone cell division. The expression of collagenases MMP-1 , -8 and -13 and tissue inhibitor of metalloproteinases (TIMP)-1 was altered in OA cartilage, but no difference was detected between lesion and distal sites in the same joint (i.e. no correlation was found between senescent cells and proteinase/ inhibitor expression).
This review highlights a paucity of data on the use of BMP in fracture healing as well as considerable industry involvement in currently available evidence. There is limited evidence to suggest that BMP may be more effective than controls for acute tibial fracture healing, however, the use of BMP for treating nonunion remains unclear. The limited available economic evidence indicates that BMP treatment for acute open tibial fractures may be more favourable economically when used in patients with the most severe fractures.
Tendon injury is common and debilitating, and it is associated with long-term pain and ineffective healing. It is estimated to afflict 25% of the adult population and is often a career-ending disease in athletes and racehorses. Tendon injury is associated with high morbidity, pain, and long-term suffering for the patient. Due to the low cellularity and vascularity of tendon tissue, once damage has occurred, the repair process is slow and inefficient, resulting in mechanically, structurally, and functionally inferior tissue. Current treatment options focus on pain management, often being palliative and temporary and ending in reduced function. Most treatments available do not address the underlying cause of the disease and, as such, are often ineffective with variable results. The need for an advanced therapeutic that addresses the underlying pathology is evident. Tissue engineering and regenerative medicine is an emerging field that is aimed at stimulating the body's own repair system to produce de novo tissue through the use of factors such as cells, proteins, and genes that are delivered by a biomaterial scaffold. Successful tissue engineering strategies for tendon regeneration should be built on a foundation of understanding of the molecular and cellular composition of healthy compared with damaged tendon, and the inherent differences seen in the tissue after disease. This article presents a comprehensive clinical, biological, and biomaterials insight into tendon tissue engineering and regeneration toward more advanced therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.