HighlightsWe present a robust and simple bias-adjustment scheme for neuroimaging-based brain age frameworks.The efficiency of proposed bias-adjustment scheme was assessed in the context of cognitively healthy aging and Alzheimer's disease.The proposed bias-adjustment scheme was shown efficient and statistically improved results, making it a necessary part for future brain age frameworks.
Background
An international Delphi panel has defined a harmonized protocol (HarP) for the manual segmentation of the hippocampus on MR. The aim of this study is to study the concurrent validity of the HarP toward local protocols, and its major sources of variance.
Methods
Fourteen tracers segmented 10 Alzheimer's Disease Neuroimaging Initiative (ADNI) cases scanned at 1.5 T and 3T following local protocols, qualified for segmentation based on the HarP through a standard web-platform and resegmented following the HarP. The five most accurate tracers followed the HarP to segment 15 ADNI cases acquired at three time points on both 1.5 T and 3T.
Results
The agreement among tracers was relatively low with the local protocols (absolute left/right ICC 0.44/0.43) and much higher with the HarP (absolute left/right ICC 0.88/0.89). On the larger set of 15 cases, the HarP agreement within (left/right ICC range: 0.94/0.95 to 0.99/0.99) and among tracers (left/right ICC range: 0.89/0.90) was very high. The volume variance due to different tracers was 0.9% of the total, comparing favorably to variance due to scanner manufacturer (1.2), atrophy rates (3.5), hemispheric asymmetry (3.7), field strength (4.4), and significantly smaller than the variance due to atrophy (33.5%, P < .001), and physiological variability (49.2%, P < .001).
Conclusions
The HarP has high measurement stability compared with local segmentation protocols, and good reproducibility within and among human tracers. Hippocampi segmented with the HarP can be used as a reference for the qualification of human tracers and automated segmentation algorithms.
Background
The promise of Alzheimer’s disease (AD) biomarkers has led to their incorporation in new diagnostic criteria and in therapeutic trials; however, significant barriers exist to widespread use. Chief among these is the lack of internationally accepted standards for quantitative metrics. Hippocampal volumetry is the most widely studied quantitative magnetic resonance imaging (MRI) measure in AD and thus represents the most rational target for an initial effort at standardization.
Methods and Results
The authors of this position paper propose a path toward this goal. The steps include: 1) Establish and empower an oversight board to manage and assess the effort, 2) Adopt the standardized definition of anatomic hippocampal boundaries on MRI arising from the EADC-ADNI hippocampal harmonization effort as a Reference Standard, 3) Establish a scientifically appropriate, publicly available Reference Standard Dataset based on manual delineation of the hippocampus in an appropriate sample of subjects (ADNI), and 4) Define minimum technical and prognostic performance metrics for validation of new measurement techniques using the Reference Standard Dataset as a benchmark.
Conclusions
Although manual delineation of the hippocampus is the best available reference standard, practical application of hippocampal volumetry will require automated methods. Our intent is to establish a mechanism for credentialing automated software applications to achieve internationally recognized accuracy and prognostic performance standards that lead to the systematic evaluation and then widespread acceptance and use of hippocampal volumetry. The standardization and assay validation process outlined for hippocampal volumetry is envisioned as a template that could be applied to other imaging biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.