We explore the ultrafast photoprotective properties of a series of sinapic acid derivatives in a range of solvents, utilizing femtosecond transient electronic absorption spectroscopy. We find that a primary relaxation mechanism displayed by the plant sunscreen sinapoyl malate and other related molecular species may be understood as a multistep process involving internal conversion of the initially photoexcited 1(1)ππ* state along a trans-cis photoisomerization coordinate, leading to the repopulation of the original trans ground-state isomer or the formation of a stable cis isomer.
(2015) Probing the ultrafast energy dissipation mechanism of the sunscreen oxybenzone after UVA irradiation. Journal of Physical Chemistry Letters, 6 (8). pp. 1363-1368. Permanent WRAP URL:http://wrap.warwick.ac.uk/83198 Copyright and reuse:The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Publisher's statement:This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review and technical editing by the publisher.To access the final edited and published work see http://dx.doi.org/10.1021/acs.jpclett.5b00417 A note on versions:The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription. ABSTRACT: Oxybenzone is a common constituent of many commercially available sunscreens providing photoprotection from ultraviolet light incident on the skin. Femtosecond transient electronic and vibrational absorption spectroscopies have been used to investigate the non-radiative relaxation pathways of oxybenzone in cyclohexane and methanol after excitation in the UVA region. The present data suggest that the photoprotective properties of oxybenzone can be understood in terms of an initial ultrafast excited state enol keto tautomerization, followed by efficient internal conversion and subsequent vibrational relaxation to the ground state (enol) tautomer.TOC GRAPHIC
Mechanistic insight into the photo-induced solvent substitution reaction of cis-[Ru(bipyridine)2(nicotinamide)2](2+) (1) is presented. Complex 1 is a photoactive species, designed to display high cytotoxicity following irradiation, for potential use in photodynamic therapy (photochemotherapy). In Ru(II) complexes of this type, efficient population of a dissociative triplet metal-centred ((3)MC) state is key to generating high quantum yields of a penta-coordinate intermediate (PCI) species, which in turn may form the target species: a mono-aqua photoproduct [Ru(bipyridine)2(nicotinamide)(H2O)](2+) (2). Following irradiation of 1, a thorough kinetic picture is derived from ultrafast UV/Vis transient absorption spectroscopy measurements, using a 'target analysis' approach, and provides both timescales and quantum yields for the key processes involved. We show that photoactivation of 1 to 2 occurs with a quantum yield ≥0.36, all within a timeframe of ~400 ps. Characterization of the excited states involved, particularly the nature of the PCI and how it undergoes a geometry relaxation to accommodate the water ligand, which is a keystone in the efficiency of the photoactivation of 1, is accomplished through state-of-the-art computation including complete active space self-consistent field methods and time-dependent density functional theory. Importantly, the conclusions here provide a detailed understanding of the initial stages involved in this photoactivation and the foundation required for designing more efficacious photochemotherapy drugs of this type.
Sinapate esters are used throughout the plant kingdom, for example in photoprotection from ultraviolet radiation. Sinapate esters are naturally produced in their E-isomeric form; however, upon exposure to ultraviolet radiation, photoisomerization drives Z-isomer formation. To elucidate the photoprotection capacity of E vs. Z forms of sinapate esters, we explore the photochemistry of the model system, Z-ethyl sinapate. Following a novel Z-ethyl sinapate synthesis, we demonstrate that photoprotection is isomer independent. This suggests that, regarding photoprotection, there were no evolutionary pressures for biosynthesis of either isomer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.