We present version 3 of the open-source simulator for flow and transport processes in porous media DuMu x . DuMu x is based on the modular C++ framework Dune (Distributed and Unified Numerics Environment) and is developed as a research code with a focus on modularity and reusability. We describe recent efforts in improving the transparency and efficiency of the development process and community-building, as well as efforts towards quality assurance and reproducible research. In addition to a major redesign of many simulation components in order to facilitate setting up complex simulations in DuMu x , version 3 introduces a more consistent abstraction of finite volume schemes. Finally, the new framework for multi-domain simulations is described, and three numerical examples demonstrate its flexibility.
This study addresses a major gap in the understanding and control of microbially enhanced coal-bed methane (MECBM) production. A mathematical and conceptual model comprises a food-web that includes two types of bacteria and three types of archaea representing substrate-specific members of the community; the microbial community members are potentially interacting by competing for or being inhibited by substrates or products of other microbial community members. The model was calibrated using data sets from two different
Microbially enhanced coal-bed methane could allow for a more sustainable method of harvesting methane from un-mineable coaldbeds. The model presented here is based on a previously validated batch model; however, this model system is based on upflow reactor columns compared to previous experiments and now includes flow, transport and reactions of amendment as well as intermediate products. The model implements filtration and retardation effects, biofilm decay, and attachment and detachment processes of microbial cells due to shear stress. The model provides additional insights into processes that cannot be easily observed in experiments. This study improves the understanding of complex and strongly interacting processes involved in microbially enhanced coal-bed methane production and provides a powerful tool able to model the entire process of enhancing methane production and transport during microbial stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.