Polymerization-induced
self-assembly (PISA) has become a widely
used technique for the rational design of diblock copolymer nano-objects
in concentrated aqueous solution. Depending on the specific PISA formulation,
reversible addition–fragmentation chain transfer (RAFT) aqueous
dispersion polymerization typically provides straightforward access
to either spheres, worms, or vesicles. In contrast, RAFT aqueous emulsion
polymerization formulations often lead to just kinetically-trapped
spheres. This limitation is currently not understood, and only a few
empirical exceptions have been reported in the literature. In the
present work, the effect of monomer solubility on copolymer morphology
is explored for an aqueous PISA formulation. Using 2-hydroxybutyl
methacrylate (aqueous solubility = 20 g dm–3 at
70 °C) instead of benzyl methacrylate (0.40 g dm–3 at 70 °C) for the core-forming block allows access to an unusual
“monkey nut” copolymer morphology over a relatively
narrow range of target degrees of polymerization when using a poly(methacrylic
acid) RAFT agent at pH 5. These new anisotropic nanoparticles have
been characterized by transmission electron microscopy, dynamic light
scattering, aqueous electrophoresis, shear-induced polarized light
imaging (SIPLI), and small-angle X-ray scattering.
A range of poly(n-butyl methacrylate-stat-methacrylic acid) [P(BMA-stat-MAA)] statistical copolymers of various compositions and molecular weights ranging from 5 to 30 kDa were prepared using either reversible addition-fragmentation chain transfer (RAFT) solution copolymerization or conventional free radical polymerization in isopropanol (IPA). On dilution with water, these amphiphilic copolymers self-assembled to form spherical nano-objects as confirmed by small-angle X-ray scattering (SAXS) and transmission electron microscopy. Various structural particle models were examined to extract information regarding the mean nano-object size and morphology. It is found that nano-object radii are independent of copolymer molecular weight, but depend on the copolymer composition: the smaller the amount of MAA units in the molecules the larger the nanoobjects are formed. Combined SAXS and aqueous electrophoretic measurements indicated that most of the MAA units are located at the nano-object surface. Furthermore, SAXS and rheology measurements were used to monitor the effect of solvent composition on the copolymer morphology both at a fixed copolymer concentration (either 1 wt% or 25 wt%) and also for a gradual variation in copolymer
Stimulus responsive copolymers are an important class of surfactants that are attracting growing attention in the literature. When used to stabilize colloids, they confer responsiveness to an otherwise nonresponsive system. In this work, a new pH-responsive comb copolymer surfactant, poly(DEAEMa-co-PEGMa), where DEAEMa and PEGMa are diethylaminoethyl methacrylate and poly(ethylene glycol) methacrylate, is introduced and used to stabilize emulsions and particulate dispersions. The copolymer contained 70 mol % of DEAEMa. Turbidity versus pH measurements and photon correlation spectroscopy of the copolymer solutions revealed pH-triggered collapse of the chains above the pK(a). The surface activity of the copolymer increased with pH. The minimum surface tension measured was 33.6 mN/m at pH = 10. These data enabled identification of the pK(a) for poly(DEAEMa-co-PEGMa) as 6.8. The emulsions consisted of tetradecane-in-water and had a droplet size in the range 5-11 mum. They were slightly flocculated when the pH value was close to the isoelectric point. The emulsions phase separated at low pH values. The particulate dispersions were based on carbendazim, which is a fungacide, and had an average size of 1.8 mum. The data for the emulsions and carbendazim dispersions show that the extent of flocculation decreases with decreasing size of the dispersed phase. Analysis of the data suggest that optimum emulsion stability occurs in the pH region of 5.3-6.8 as judged by turbidity measurements. Electrophoretic mobility measurements as a function of pH for the emulsions and carbendazim dispersions reveal a similar isoelectric point in the range of 8.5-9.0, which is about two pH units higher than the pK(a) of the copolymer. A mechanism that explains the pH-responsive stability of the emulsions and dispersions is presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.