Docking is a computational technique that samples conformations of small molecules in protein binding sites; scoring functions are used to assess which of these conformations best complements the protein binding site. An evaluation of 10 docking programs and 37 scoring functions was conducted against eight proteins of seven protein types for three tasks: binding mode prediction, virtual screening for lead identification, and rank-ordering by affinity for lead optimization. All of the docking programs were able to generate ligand conformations similar to crystallographically determined protein/ligand complex structures for at least one of the targets. However, scoring functions were less successful at distinguishing the crystallographic conformation from the set of docked poses. Docking programs identified active compounds from a pharmaceutically relevant pool of decoy compounds; however, no single program performed well for all of the targets. For prediction of compound affinity, none of the docking programs or scoring functions made a useful prediction of ligand binding affinity.
An empirical hydrophobic field-like 3D function has been calculated with the program HINT (hydrophobic interactions) and imported into the SYBYL implementation of CoMFA (Comparative Molecular Field Analysis). The addition of hydrophobicity appears to offer increased chemical interpretability of CoMFA models. An example is given using the steroid model reported by Cramer et al. (J. Am. Chem. Soc., 110 (1988) 5959). While addition of the HINT field did not improve statistical parameters in this model, the CoMFA coefficient contours from the hydrophobic field unambiguously define the most active steroid molecules in the chemical terms of hydrophobic and polar substituents.
We have used alanine scanning mutagenesis to identify residues in transmembrane domain 5 of the histamine H3 receptor that are important for agonist binding. All of the mutants generated were functionally expressed as demonstrated by their ability to bind [125 I]iodoproxyfan with comparable affinity to the wild-type receptor and their ability to inhibit forskolin-stimulated cAMP formation when activated by histamine. Many mutations produced small changes in the potency of histamine, but the most pronounced reduction in potency and affinity of the agonists, histamine, R-␣-methylhistamine, imetit, and impentamine, was seen with mutation of glutamate 206. Our modeling suggests that this residue plays a key role in ligand binding by interacting with the imidazole ring of histamine. Interestingly, L199A greatly reduced agonist potency in functional assays but had only minor effects on agonist affinity, implicating a role for this residue in the mechanism of receptor activation. We also studied the functional effects of the mutations by linking the receptor to calcium signaling using a chimeric G protein. A comparison of the two functional assays demonstrated contrasting effects on agonist activity. Histamine, imetit, and impentamine were full agonists in the cAMP assay, but imetit exhibited only partial agonist activity through the chimeric G protein. Furthermore, impentamine, another potent agonist in the cAMP assay, was only able to activate the E206A mutant in the calcium assay despite being inactive at the wild-type receptor. These observations suggest that the agonist receptor complexes formed by these three different H3 agonists are not conformationally equivalent.
Rho kinase (ROCK1) mediates vascular smooth muscle contraction and is a potential target for the treatment of hypertension and related disorders. Indazole amide 3 was identified as a potent and selective ROCK1 inhibitor but possessed poor oral bioavailability. Optimization of this lead resulted in the discovery of a series of dihydropyridones, exemplified by 13, with improved pharmacokinetic parameters relative to the initial lead. Indazole substitution played a critical role in decreasing clearance and improving oral bioavailability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.