Online social networks have become important vehicles for connecting people for work and leisure. As these networks grow, data that are stored over these networks also grow, and management of these data becomes a challenge. Graph data models are a natural fit for representing online social networks but need to support distribution to allow the associated graph databases to scale while offering acceptable performance. We provide scalability by considering methods for partitioning graph databases and implement one within the Neo4j architecture based on distributing the vertices of the graph. We evaluate its performance in several simple scenarios and demonstrate that it is possible to partition a graph database without incurring significant overhead other than that required by network delays. We identify and discuss several methods to reduce the observed network delays in our prototype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.