This paper reports that aggressive antibiotic treatment inhibits disease activity and lymphocyte proliferation in cutaneous T-cell lymphoma (CTCL). The study offers important evidence for a link between bacterial infection, activation of the immune system, and CTCL progression.
• Staphylococcal enterotoxins activate oncogenic pathways in CTCL.• This discovery implies a novel role of microbes as drivers of disease progression. In conclusion, we demonstrate that SEA induces cell cross talk-dependent activation of STAT3 and expression of IL-17 in malignant T cells, suggesting a mechanism whereby SEA-producing bacteria promote activation of an established oncogenic pathway previously implicated in
Sézary syndrome (SS) is an aggressive leukemic variant of cutaneous T-cell lymphoma (CTCL) with a median life expectancy of less than 4 years. Although initial treatment responses are often good, the vast majority of patients with SS fail to respond to ongoing therapy. We hypothesize that malignant T cells are highly heterogeneous and harbor subpopulations of SS cells that are both sensitive and resistant to treatment. Here, we investigate the presence of single-cell heterogeneity and resistance to histone deacetylase inhibitors (HDACi) within primary malignant T cells from patients with SS. Using single-cell RNA sequencing and flow cytometry, we find that malignant T cells from all investigated patients with SS display a high degree of single-cell heterogeneity at both the mRNA and protein levels. We show that this heterogeneity divides the malignant cells into distinct subpopulations that can be isolated by their expression of different surface antigens. Finally, we show that treatment with HDACi (suberanilohydroxamic acid and romidepsin) selectively eliminates some subpopulations while leaving other subpopulations largely unaffected. In conclusion, we show that patients with SS display a high degree of single-cell heterogeneity within the malignant T-cell population, and that distinct subpopulations of malignant T cells carry HDACi resistance. Our data point to the importance of understanding the heterogeneous nature of malignant SS cells in each individual patient to design combinational and new therapies to counter drug resistance and treatment failure.
Aberrant activation of Janus kinase-3 (Jak3) and its key down-stream effectors, Signal Transducer and Activator of Transcription-3 (STAT3) and STAT5, is a key feature of malignant transformation in cutaneous T-cell lymphoma (CTCL). However, it remains only partially understood how Jak3/STAT activation promotes lymphomagenesis. Recently, non-coding microRNAs (miRNAs) have been implicated in the pathogenesis of this malignancy. Here, we show that (i) malignant T cells display a decreased expression of a tumor suppressor miRNA, miR-22, when compared to non-malignant T cells, (ii) STAT5 binds the promoter of the miR-22 host gene, and (iii) inhibition of Jak3, STAT3, and STAT5 triggers increased expression of pri-miR-22 and miR-22. Curcumin, a nutrient with anti-Jak3 activity and histone deacetylase inhibitors (HDACi) also trigger increased expression of pri-miR-22 and miR-22. Transfection of malignant T cells with recombinant miR-22 inhibits the expression of validated miR-22 targets including NCoA1, a transcriptional co-activator in others cancers, as well as HDAC6, MAX, MYCBP, PTEN, and CDK2, which have all been implicated in CTCL pathogenesis. In conclusion, we provide the first evidence that de-regulated Jak3/STAT3/STAT5 signalling in CTCL cells represses the expression of the gene encoding miR-22, a novel tumor suppressor miRNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.