We analyze the relation between digitalization and the market value of US insurance companies. To create a text‐based measure that captures the extent to which insurers digitalize, we apply an unsupervised machine learning algorithm—Latent Dirichlet Allocation—to their annual reports. We show that an increase in digitalization is associated with an increase in market valuations in the insurance sector. In detail, capital market participants seem to reward digitalization efforts of an insurer in the form of higher absolute market capitalizations and market‐to‐book ratios. Additionally, we provide evidence that the positive relation between digitalization and market valuations is robust to sentiment in the annual reports and the choice of the reference document on digitalization, both being issues of particular importance in text‐based analyses.
Copulas. We study the model risk of multivariate risk models in a comprehensive empirical study on Copula-GARCH models used for forecasting Value-at-Risk and Expected Shortfall. To determine whether model risk inherent in the forecasting of portfolio risk is caused by the candidate marginal or copula models, we analyze different groups of models in which we fix either the marginals, the copula, or neither. Model risk is economically significant, is especially high during periods of crisis, and is almost completely due to the choice of the copula. We then propose the use of the model confidence set procedure to narrow down the set of available models and reduce model risk for Copula-GARCH risk models. Our proposed approach leads to a significant improvement in the mean absolute deviation of one day ahead forecasts by our various candidate risk models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.