a b s t r a c tThe practical implementation of the European Water Framework Directive has resulted in an increased focus on the hyporheic zone. In this paper, an integrated model was developed for evaluating the impact of point sources in groundwater on human health and surface water ecosystems. This was accomplished by coupling the system dynamics-based decision support system CARO-PLUS to the aquatic ecosystem model AQUATOX using an analytical volatilization model for the stream. The model was applied to a case study where a trichloroethylene (TCE)-contaminated groundwater plume is discharging to a stream. The TCE source will not be depleted for many decades; however, measured and predicted TCE concentrations in surface water were found to be below human health risk management targets. Volatilization rapidly attenuates TCE concentrations in surface water. Thus, only a 30-m stream reach fails to meet surface water quality criteria. An ecological risk assessment found that the TCE contamination did not impact the stream ecosystem. Uncertainty assessment revealed hydraulic conductivity to be the most important site-specific parameter. These results indicate that contaminant plumes with g L −1 concentrations of TCE entering surface water systems may not pose a significant risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.